


Classics in Mathematics 
David Gilbarg· Neil S.Trudinger Elliptic Partial Differential Equations 

of Second Order 



Springer 
Berlin 
Heidelberg 
New York 
Barcelona 
Hong Kong 
London 
Milan 
Paris 
Singapore 
Tokyo 



David Gilbarg was born in 
New York in 1918, and was 
educated there through 

undergraduate school. He received his Ph.D. degree 
at Indiana University in 1941. His work in fluid 
dynamics during the war years motivated much of 
his later research on flows with free boundaries. 
He was on the Mathematics Faculty at Indiana Uni
versity from 1946 to 1957 and at Stanford University 
from 1957 on. His principal interests and contri
butions have been in mathematical fluid dynamics 
and the theory of elliptic partial differential 
equations. 

Neil S. Trudinger was born 
in Ballarat, Australia in 
1942. After schooling and 
undergraduate education 
in Australia, he completed 
his Ph.D. at Stanford 
University, USA in 1966. 

He has been a Professor of 
Mathematics at the Australian National University, 
Canberra since 1973. His research contributions, 
while largely focused on non-linear elliptic partial 
differentipl equations, have also spread into 
geometry, functional analysis and computational 
mathematics. Among honours received are Fellow
ships of the Australian Academy of Science and 
of the Royal Society of London. 



David Gilbarg • Neil S. Trudinger 

Elliptic Partial 
Differential Equations 

of Second Order 

Reprint of the 1998 Edition 

Springer 



David Gilbarg 
Stanford University 
Department of Mathematics 
Stanford. CA 94305-2125 
USA 
e-mail: gilbarg@math.stanford.edu 

Neil S. Trudinger 
The Australian National University 
School of Mathematical Sciences 
Canberra ACT 0200 
Australia 
e-mail: neiltrudinger@anu.edu.au 

Originally published as Vol. 224 of the 
Grundlehren der mathematischen Wissenschaften 

Cataloging-in-Publication Data applied for 

Die Deutsche Bibliothek· CIP-Einbeitsaufnahme 

Gilbarg. David: 
Elliptic partial differential equations of second order I David Gilbarg; Neil S. Trudinger. -Reprint of the 1998 
ed. - Berlin; Heidelberg; New York; Barcelona; Hong Kong; London; Milan; Paris; Singapore; 1bkyo: 
Springer.lOO1 
(Classics in mathematics) 

Mathematics Subject Classification (2000): 3SJxx 

ISSN 1431-0821 
ISBN-I3: 978-3-540-41160-4 e-ISBN-13: 978-3-642-61798-0 
001: 10.1007/978-3-642-61798-0 

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is 
concerned, specificaUy the rights of translation, reprinting. reuse of illustrations. recitation, broadcasting. 
reproduction on microfilm or in any other way. and storage in data banks. Duplication of this publication or 
parts thereof is permitted only under the provisions of the German Copyright Law of September 9. 1965. in its 
current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable 
for prosecution under the German Copyright Law. 

Springer-Verlag Berlin Heidelberg New York 
a member of Springer Science+Business Media 

C Springer· Verlag Berlin Heidelberg 2001 

The use of general descriptive names. registered names. trademarks etc. in this publication does not imply. 
even in the absence of a specific statement. that such names are exempt from the relevant protective laws and 
regulations and therefore free for general use. 

Printed on acid·free paper SPIN 10982136 411311lck-S4 3 2 I 



Preface to the Revised Third Printing 

This revision of the 1983 second edition of "Elliptic Partial Differential Equations 
of Second Order" corresponds to the Russian edition, published in 1989, in which 
we essentially updated the previous version to 1984. The additional text relates to 
the boundary Holder derivative estimates of Nikolai Krylov, which provided a 
fundamental component of the further development of the classical theory of 
elliptic (and parabolic), fully nonlinear equations in higher dimensions. In 
our presentation we adapted a simplification of Krylov's approach due to Luis 
Caffarelli. 

The theory of nonlinear second order elliptic equations has continued to 
flourish during the last fifteen years and, in a brief epilogue to this volume, we 
signal some of the major advances. Although a proper treatment would necessi
tate at least another monograph, it is our hope that this book, most of whose text 
is now more than twenty years old, can continue to serve as background for these 
and future developments. 

Since our first edition we have become indebted to numerous colleagues, all 
over the globe. It was particularly pleasant in recent years to make and renew 
friendships with our Russian colleagues, Olga Ladyzhenskaya, Nina Ural'tseva, 
Nina Ivochkina, Nikolai Krylov and Mikhail Safonov, who have contributed so 
much to this area. Sadly, we mourn the passing away in 1996 of Ennico De Giorgi, 
whose brilliant discovery forty years ago opened the door to the higher-dimen
sional nonlinear theory. 

October 1997 David Gilbarg . Neil S. Trudinger 



Preface to the First Edition 

This volume is intended as an essentially self-contained exposition of portions of the 
theory of second order quasilinear elliptic partial differential equations, with 
emphasis on the Dirichlet problem in bounded domains. It grew out of lecture 
notes for graduate courses by the authors at Stanford University, the final material 
extending well beyond the scope of these courses. By including preparatory 
chapters on topics such as potential theory and functional analysis, we have 
attempted to make the work accessible to a broad spectrum of readers. Above all, 
we hope the readers of this book will gain an appreciation of the multitude of 
ingenious barehanded techniques that have been developed in the study of elliptic 
equations and have become part of the repertoire of analysis. 

Many individuals have assisted us during the evolution of this work over the 
past several years. In particular, we are grateful for the valuable discussions 
with L. M. Simon and his contributions in Sections 15.4 to 15.8; for the helpful 
comments and corrections of J. M. Cross, A. S. Geue, J. Nash, P. Trudinger and 
B. Turkington; for the contributions ofG. Williams in Section 10.5 and of A. S. 
Geue in Section 10.6; and for the impeccably typed manuscript which resulted 
from the dedicated efforts ofIsolde Field at Stanford and Anna Zalucki at Canberra. 
The research of the authors connected with this volume was supported in part by 
the National Science Foundation. 

August 1977 David Gilbarg 
Stanford 

Neil S. Trudinger 
Canberra 

Note: The Second Edition includes a new, additional Chapter 9. Consequently Chapters 10 
and 15 referred to above have become Chapters 11 and 16. 
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Chapter I 

Introduction 

Summary 

The principal objective of this work is the systematic development of the general 
theory of second order quasilinear elliptic equations and of the linear theory 
required in the process. This means we shall be concerned with the solvability of 
boundary value problems (primarily the Dirichlet problem) and related general 
properties of solutions of linear equations 

and of quasilinear equations 

(1.2) Qu == aij(x, u, Du)Diju + b(x, u, Du) = O. 

Here Du=(Dtu, ... , Dnu), where Diu=eujexp DiP=e2Ujoxi oXj , etc., and the 
summation convention is understood. The ellipticity of these equations is expressed 
by the fact that the coefficient matrix [aij] is (in each case) positive definite in the 
domain of the respective arguments. We refer to an equation as uniformly elliptic 
if the ratio y of maximum to minimum eigenvalue of the matrix [d j ] is bounded. 
We shall be concerned with both non-uniformly and uniformly elliptic equations. 

The clasliical prototypes of linear elliptic equations are of course Laplace's 
equation 

and its inhomogeneous counterpart, Poisson's equation Au= f Probably the best 
known example of a quasilinear elliptic equation is the minimal surface equation 

which arises in the problem of least area. This equation is non-uniformly elliptic, 
with Y= I +IDuI 2 • The properties of the differential operators in these examples 
motivate much of the theory of the general classes of equations discussed in this 
book. 



2 I. Introduction 

The relevant linear theory is developed in Chapters 2-9 (and in part of Chapter 
12). Although this material has independent interest; the emphasis here is on 
aspects needed for application to nonlinear problems. Thus the theory stresses weak 
hypotheses on the coefficients and passes over many of the important classical and 
modem results on linear elliptic equations. 

Since we are ultimately interested in classical solutions of equation (1.2), what is 
required at some point is an underlying theory of classical solutions for a suffi
ciently large class of linear equations. This is provided by the Schauder theory in 
Chapter 6, which is an essentially complete theory for the class of equations ( I .1 ) 
with Holder continuous coefficients. Whereas such equations enjoy a definitive 
existence and regularity theory for classical solutions, corresponding results cease 
to be valid for equations in which the coefficients are assumed only continuous. 

A natural starting point for the study of classical solutions is the theory of 
Laplace's and Poisson's equations. This is the content of Chapters 2 and 4. In 
anticipation of later developments the Dirichlet problem for harmonic functions 
with continuous boundary values is approached through the Perron method of 
subharmonic functions. This emphasizes the maximum principle. and with it the 
barrier concept for studying boundary behavior. in arguments that are readily 
extended to more general situations in later chapters. In Chapter 4 we derive the 
basic Holder estimates for Poisson's equation from an analysis of the Newtonian 
potential. The principal result here (see Theorems 4.6. 4.8) states that all C2(U) 
solutions of Poisson's equation, Liu= I. in a domain D of IRn satisfy a uniform 
estimate in any subset D'c cD 

(1.3) lIu IIc2. ~,.,.) ~ C(sup lui + III Ilc~Q)' 
a 

where C is a constant depending only on (X (0 < (X < I). the dimension nand dist 
(D'. aD); (for notation see Section 4.1). This interior estimate (interior since 
D' c c U) can be extended to a global estimate for solutions with sufficiently 
smooth boundary values provided the boundary aD is also sufficiently smooth. 
In Chapter 4 estimates up to the boundary are established only for hyperplane and 
spherical boundaries. but these suffice for the later applications. 

The climax of the theory of classical solutions of linear second order elliptic 
equations is achieved in the Schauder theory. which is developed in modified and 
expanded form in Chapter 6. Essentially. this theory extends the results of potential 
theory to the class of equations (1.1) having Holder continuous coefficients. This is 
accomplished by the simple but fundamental device of regarding the equation 
locally as a perturbation of the constant coefficient equation obtained by fixing the 
leading coefficients at their values at a single point. A careful calculation based on 
the above mentioned estimates for Poisson's equation yields the same inequality 
(1.3) for any C2 ... solution of (1.1). where the constant C now depends also on the 
bounds and Holder constants of the coefficients and in addition on the minimum 
and maximum eigenvalues of the coefficient matrix [a ii ] in D. These results are 
stated as interior estimates in terms of weighted interior norms (Theorem 6.2) and. 
in the case of sufficiently smooth boundary data, as global estimates in terms of 
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global norms (Theorem 6.6). Here we meet the important and recurring concept of 
an apriori estimate; namely. an estimate (in terms of given data) valid for all possible 
solutions of a class of problems even if the hypotheses do not guarantee the 
existence of such solutions. A major part of this book is devoted to the establish
ment of apriori bounds for various problems. (We have taken the liberty of 
replacing the latin a priori with the single word apriori, which will be used 
throughout.) 

The importance of such apriori estimates is visible in several applications in 
Chapter 6. among them in establishing the solvability of the Dirichlet problem by 
the method of continuity (Theorem 6.8) and in proving the higher order regularity 
of C1 solutions under appropriate smoothness hypotheses (Theorems 6.17. 6.19). 
In both cases the estimates provide the necessary compactness properties for 
certain classes of solutions. from which the desired results are easily inferred. 

We remark on several additional features of Chapter 6. which are not needed 
for the later developments but which broaden the scope of the basic Schauder 
theory. In Section 6.5 it is seen that for continuous boundary values and a suitably 
wide class of domains the proof of solvability of the Dirichlet problem for (1.1) can 
be achieved entirely with interior estimates. thereby simplifying the structure of the 
theory. The results of Section 6.6 extend the existence theory for the Dirichlet 
problem to certain classes of non-uniformly elliptic equations. Here we see how 
relations between geometric properties of the boundary and the degenerate ellipti
city at the boundary determine the continuous assumption of boundary values. 
The methods are based on barrier arguments that foreshadow analogous (but 
deeper) results for nonlinear equations in Part II. In Section 6.7 we extend the 
theory of (1.1) to the regular oblique derivative problem. The method is basically 
an extrapolation to these boundary conditions of the earlier treatment of Poisson's 
equation and the Schauder theory (without barrier arguments. however). 

In the preceding considerations. especially in the existence theory and barrier 
arguments. the maximum principle for the operator L (when c:S:;;O) plays an 
essential part. This is a special feature of second order elliptic equations that 
simplifies and strengthens the theory. The basic facts concerning the maximum 
principle. as well as illustrative applications of comparison methods. are contained 
in Chapter 3. The maximum principle provides the earliest and simplest apriori 
estimates of the general theory. It is of considerable interest that all the estimates of 
Chapters 4 and 6 can be derived entirely from comparison arguments based on the 
maximum principle. without any mention of the Newtonian potential or integrals. 

An alternative and more general approach to linear problems. without poten
tial theory. can be achieved by Hilbert space methods based on generalized or 
weak solutions. as in Chapter 8. To be more specific. let L' be a second order 
differential operator. with principal part of divergence form. defined by 

If the coefficients are sufficiently smooth. then clearly this operator falls within the 
class discussed in Chapter 6. However. even if the coefficients are in a much wider 
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class and u is only weakly differentiable (in the sense of Chapter 7), one can still 
define weak or generalized solutions of L'u=g in appropriate function classes. 
In particular, if the coefficients aij, bi , ci are bounded and measurable in a and 9 
is an integrable function in a, let us call u a weak or generalized solution of 
L'u=g in a ifu E WI,2(0) (as defined in Chapter 7) and 

(1.4) f [(diDp+biu)DiV-(ciDiu + du)v] dx=- J.qV dx 

for all test functions t' E C ~ (0). It is clear that if the coefficients and .q are suffi
ciently smooth and u E C 2(O), then u is also a classical solution. 

We can now speak also of weak solutions u of the generalized Dirichlet problem, 

L'u=g in a, u=cp on 00, 

ifu is a weak solution satisfying u-cp E W~,2(0), where cp E W1.2(0). Assuming 
that the minimum eigenvalue of [di ] is bounded away from zero in a, that 

(1.5) D,H+d~O 

in the weak sense, and that also gEL 2(0), we find in Theorem 8.3 that the 
generalized Dirichlet problem has a unique solution u E WI, 2(0). Condition (1.5), 
which is the analogue of c ~ 0 in (I ,I), assures a maximum principle for weak 
solutions of L'u ~ O( ~ 0) (Theorem 8.1) and hence uniqueness for the generalized 
Dirichlet problem. Existence of a solution then follows from the Fredholm alter
native for the operator L' (Theorem 8.6), which is proved by an application of the 
Riesz representation theorem in the Hilbert space W ~. 2(0). 

The major part of Chapter 8 is taken up with the regularity theory for weak 
solutions. Additional regularity of the coefficients in (1.4) implies that the solutions 
belong to higher Wk.2 spaces (Theorems 8.8, 8.10). It follows from the Sobolev 
imbedding theorems in Chapter 7 that weak solutions are in fact classical solutions 
provided the coefficients are sufficiently regular. Global regularity of these 
solutions is inferred by extending interior regularity to the boundary when the 
boundary data are sufficiently smooth (Theorems 8.13, 8.14). 

The regularity theory of weak solutions and the associated pointwise estimates 
are fundamental to the nonlinear theory. These results provide the starting point 
for the "bootstrap" arguments that are typical of nonlinear problems. Briefly, the 
idea here is to start with weak solutions of a quasilinear equation, regarding them 
as weak solutions of related linear equations obtained by inserting them into the 
coefficients, and then to proceed by establishing improved regularity of these 
solutions. Starting anew with the latter solutions and repeating the process, still 
further regularity is assured, and so on, until the original weak solutions are finally 
proved to be suitably smooth. This is the essence of the regularity proofs for the 
older variational problems and is implicit in the nonlinear theory presented here. 

The Holder estimates for weak solutions that are so vital for the nonlinear 
theory are derived in Chapter 8 from Harnack inequalities based on the Moser 
iteration technique (Theorems 8.17, 8.18, 8.20, 8.24). These results generalize the 
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basic apriori Holder estimate of De Giorgi, which provided the initial breakthrough 
in the theory of quasilinear equations in more than two independent variables. 
The arguments rest on integral estimates for weak solutions u derived from judi
cious choice of test functions v in (1.4). The test function technique is the dominant 
theme in the derivation of estimates throughout most of this work. 

In this edition we have added new material to Chapter 8 covering the Wiener 
criterion for regular boundary points, eigenvalues and eigenfunctions, and Holder 
estimates for first derivatives of solutions of linear divergence structure equations. 

We conclude Part I of the present edition with a new chapter, Chapter 9, 
concerning strong solutions of linear elliptic equations. These are solutions which 
possess second derivatives, at least in a weak sense, and satisfy (1.1) almost every
where. Two strands are interwoven in this chapter. First we derive a maximum 
principle of Aleksandrov, and a related apriori bound (Theorem 9.1) for solutions 
in the Sobolev space W 2 , "(.0), thereby extending certain basic results from Chapter 3 
to nonclassical solutions. Later in the chapter, these results are applied to establish 
various pointwise estimates, including the recent Holder and Harnack estimates of 
Krylov and Safonov (Theorems 9.20, 9.22; Corollaries 9.24, 9.25). The other strand 
in this chapter is the U theory of linear second-order elliptic equations that is 
analogous to the Schauder theory of Chapter 6. The basic estimate for Poisson's 
equation, namely the Calderon-Zygmund inequality (Theorem 9.9) is derived 
through the Marcinkiewicz interpolation theorem, although without the use of 
Fourier transform methods. Interior and global estimates in the Sobolev spaces 
W 2,P(.Q), 1 < p < 00, are established in Theorems 9.11, 9.13 and applied to the 
Dirichlet problem for strong solutions, in Theorem 9.15 and Corollary 9.18. 

Part 11 of this book is devoted largely to the Dirichlet problem and related 
estimates for quasi linear equations. The results concern in part the general operator 
(1.2) while others apply especialIy to operatorS of divergence form 

0.6) Qu=div A(x, u, Du)+B(x, u, Du) 

where A(x, Z, p) and B(x, z, p) are respectively vector and scalar functions defined 
on.Qx IR x IR". 

Chapter 10 extends maximum and comparison principles (analogous to results 
in Chapter 3) to solutions and subsolutions of quasilinear equations. We mention 
in particular apriori bounds for solutions of Qu ~ 0 ( = 0), where Q is a divergence 
form operator satisfying certain structure conditions more general than elIipticity 
(Theorem 10.9). 

Chapter 11 provides the basic framework for the solution of the Dirichlet 
problem in the folIowing chapters. We are concerned principalIy with classical 
solutions, and the equations may be uniformly or non-uniformly elIiptic. Under 
suitable general hypotheses any globalIy smooth solution u of the boundary value 
problem for Qu=O in a domain .0 with smooth boundary can be viewed as a 
fixed point, u = Tu, of a compact operator T from CI.~(Q) to CI.2(Q) for any 
0( E (0, I). In the applications the function defined by Tu, for any u E Cl. 2(Q), is the 
unique solution of the linear problem obtained by inserting u into the coefficients 
of Q. The Leray-Schauder fixed point theorem (proved in Chapter 11) then implies 
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the existence of a solution of the boundary value problem provided an apriori 
bound. in C\'~(Q), can be established for the solutions of a related continuous 
family of equations U= T(u; (1), O~(1~ 1. where T(u; 1)= Tu (Theorems 11.4, 
11.6). The establishment of such bounds for certain broad classes of Dirichlet 
problems is the object of Chapters 13 -15. 

The general procedure for obtaining the required apriori bound for possible 
solutions u is a four-step process involving successive estimation of sup lui, 

n 
sup IDul. sup IDul. and lIullcl.o(ul for some a>O. Each of these estimates pre-
iJn n 

supposes the preceding ones and the final bound on lIullcl.o(ul completes the 
existence proof based on the Leray-Schauder theorem. 

As already observed, bounds on sup I u I are discussed in Chapter 10. In the later 
fl 

chapters this bound is either assumed in the hypotheses or is implied by properties 
of the equation. 

Equations in two variables (Chapter 12) occupy a special place in the theory. 
This is due in part to the distinctive methods that have been developed for them 
and also to the results, some of which have no counterpart for equations in more 
than two variables. The method of quasiconformal mappings and arguments based 
on divergence structure equations (cf. Chapter 11) are both applicable to equations 
in two variables and yield relatively easily the desired CI.~ apriori estimates, from 
which a solution of the Dirichlet problem follows readily. 

Of particular interest is the fact that solutions of uniformly elliptic linear equa
tions in two variables satisfy an apriori ct ... estimate depending only on the 
ellipticity constants and bounds on the coefficients, without any regularity assump
tions (Theorem 12.4). Such a c"~ estimate, or even the existence of a gradient 
bound under the same general conditions is unknown for equations in more than 
two variables. Another special feature of the two-dimensional theory is the 
existence of an apriori C' bound IDul ~ K for solutions of arbitrary elliptic equations 

(1.7) auxx +2buxy +cuyy =O, 

where u is continuous on the closure of a bounded convex domain D and has 
boundary value cp on aD satisfying a bounded slope (or three-point) condition 
with constant K. This classical result, usually based on a theorem of Rad6 on 
saddle surfaces, is given an elementary proof in Lemma 12.6. The stated gradient 
bound, which is valid for all solutions u of the general quasilinear equation (1.7) 
in which a=a(x, y, u, ux ' uy )' etc., and such that U= cp on cD, reduces this Dirichlet 
problem to the case of uniformly elliptic equations treated in Theorem 12.5. In 
Theorem 12.7 we obtain a solution of the general Dirichlet problem for (1.7), 
assuming local Holder continuity of the coefficients and a bounded slope condition 
for the boundary data (without further smoothness restrictions on the data). 

Chapters 13, 14 and IS are devoted to the derivation of the gradient estimates 
involved in the existence procedure described above. In Chapter 13, we prove the 
fundamental results of Ladyzhenskaya and Ural'tseva on Holder estimates of 
derivatives of elliptic quasilinear equations. In Chapter 14 we study the estimation 
of the gradient of solutions of elliptic quasilinear equations on the boundary. 
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After considering general and convex domains. we give an account of the theory of 
Serrin which associates generalized boundary curvature conditions with the solva
bility of the Dirichlet problem. In particular. we are able to conclude from the 
results of Chapters II. 13 and 14 the Jenkins and Serrin criterion for solvability of 
the Dirichlet problem for the minimal surface equation. namely. that this problem 
is solvable for smooth domains and arbitrary smooth boundary values if and only 
if the mean curvature of the boundary (with respect to the inner normal) is non
negative at every point (Theorem 14.14). 

Global and interior gradient bounds for solutions u of quasi linear equations 
are established in Chapter 15. Following a refinement of an old procedure of 
Bernstein we derive estimates for sup IDul in terms of sup IDul for classes of 

u au 
equations that include both uniformly elliptic equations satisfying natural growth 
conditions and equations sharing common structural properties with the prescribed 
mean curvature equation (Theorem 15.2). A variant of our approach yields interior 
gradient estimates for a more restricted class of equations (Theorem 15.3). We also 
consider uniformly and non-uniformly elliptic equations in divergence form 
(Theorems 15.6. 15.7 and 15.8). in which cases. by appropriate test function argu
ments. we deduce gradient estimates under different types of coefficient conditions 
than in the general case. We conclude Chapter 15 with a selection of existence 
theorems. chosen to illustrate the scope of the theory. These theorems are all 
obtained by various combinations of the apriori estimates in Chapters 10,14 and 15 
and a judicious choice of a related family of problems to which Theorem 11.8 can 
be applied. 

In Chapter 16. we concentrate on the prescribed mean curvature equation and 
derive an interior gradient bound (Theorem 16.5) thereby enabling us to deduce 
existence theorems for the Dirichlet problem when only continuous boundary 
values are assigned (Theorems 16.8. 16.10). We also consider a family of equations 
in two variables. which in a certain sense bear the same relationship to the prescribed 
mean curvature equation as the uniformly elliptic equations of Chapter 12 bear to 
Laplace's equation. Indeed. by means of a generalized notion of quasiconformal 
mapping. we derive interior estimates for first and second derivatives. The second 
derivative estimates provide a generalization of a well known curvature estimate 
of Heinz for solutions of the minimal surface equation (Theorem 16.20) and 
moreover. imply an extension of the famous result of Bernstein that entire solutions 
of the minimal surface equation in two variables must be linear (Corollary 16.19). 
However. perhaps the striking feature of Theorems 16.5 and 16.20 is the approach. 
Rather than working in the domain Q. we work on the hypersurface S given by the 
graph of the solution u and exploit various relations between the tangential 
gradient and Laplacian operators on S and the mean curvature of S. 

We have also added to the present edition a new final chapter. Chapter 17 is 
devoted to fully nonlinear elliptic equations. which incorporates recent work on 
equations of Monge-Ampere and Bellman-Pucci type. These are equations of the 
general form 

(1.8) F[u] = F(x, u, Du, D 2u) = 0 
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and include linear and quasi linear equations of the forms (1.1) and (1.2) as special 
cases. The function F is defined for (x, Z, p, r) E U x /R x /R" X /R")( II where /R")( II 
denotes the linear space of real symmetric n x n matrices. Equation (1.8) is elliptic 
when the derivative F, is a positive definite matrix. The method of continuity 
(Theorem 17.8) reduces the solvability of the Dirichlet problem for (1.8) to the 
establishment of C2 '''(ll) estimates, for some a. > 0; that is, in addition to the first 
derivative estimation required for the quasilinear case, we need second derivative 
estimates for fully nonlinear equations. Such estimates are established for equations 
in two variables (Theorems 17.9, 17.10), uniformly elliptic equations (Theorems 
17.14, 17.15) and equations of Monge-Ampere type (Theorems 17.19, 17.20, 17.26), 
yielding, in particular, recent results on the solvability of the Dirichlet problem for 
uniformly elliptic equations by Evans, Krylov and Lions (in Theorems 17.17, 
17.18), and for equations of Monge-Ampere type by Krylov, and Caffarelli, 
Nirenberg and Spruck (in Theorem 17.23). 

We conclude this summary with some guides to the reader. The material is not 
in strict logical order. Thus the theory of Poisson's equation (Chapter 4) would 
normally follow Laplace's equation (Chapter 2). However. the elementary 
character of the results on the maximum principle (Chapter 3) and the opportunity 
for the reader to meet early some general problems with variable coefficients 
recommends its insertion after Chapter 2. In fact. the general maximum principle 
is not used until the existence theory of Chapter 6. The basic material on functional 
analysis (Chapter 5) is needed in only a minor way for the Schauder theory: the 
contraction mapping principle and the basic concepts of Banach spaces suffice. 
except for the proof of the alternative in Theorem 6.15. For applications to non
linear problems in Part II it is sufficient to know the results of Section 1-3 of 
Chapter 6. Depending on the reader's interests, it may be preferable to study the 
linear theory by starting directly with L 2 theory in Chapter 8; this assumes the 
preliminary material on functional analysis (Chapter 5) and on the calculus of 
weakly differentiable functions (Chapter 7). The Harnack inequalities and 
Holder estimates in the regularity theory of Chapter 8 are not applied until 
Chapter 13. 

The theory of quasilinear equations in two variables (Chapter 12) is essentially 
independent of Chapters 7-11 and can be read following Chapter 6 provided one 
assumes the Schauder fixed point theorem (Theorem I 1.1). The method of quasi
conformal mappings is met again in Chapter 16 but otherwise the remaining 
chapters are independent of Chapter 12. Accordingly. after the basic outline of the 
nonlinear theory in Chapter I I the reader can proceed directly to the n-variable 
theory in Chapters 13-17. Chapter 16 is largely independent of Chapters 13-15. 
Chapters 6 and 9 are sufficient preparation for most of Chapter 17. 

Further Remarks 

Beyond the assumption of basic real analysis and linear algebra the material in this 
work is almost entirely self-contained. Thus, much of the preliminary development 
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of potential theory and functional analysis, as well as results on Sobolev spaces and 
fixed point theorems, will be familiar to many readers, although the proof of the 
Leray-Schauder theorem without topological degree in Theorem 11.6 is probably 
not so well known. A number of well established auxiliary results, such as the 
interpolation inequalities and extension lemmas of Chapter 6, are proved for the 
sake of completeness. 

There is substantial overlap with the monographs of Ladyzhenskaya and 
Vral'tseva [LV 4] and Morrey [MY 5]. This book differs from the former in some 
ofthe analytical techniques and in the emphasis on non-uniformly elliptic equations 
in the nonlinear theory; it differs from the latter in not being directly concerned 
with variational problems and methods. The present work also includes material 
developed since the publication of those books. On the other hand, it is much more 
limited in various ways. Among the topics not included ~re systems of equations, 
semilinear equations, the theory of monotone operators, and aspects of the subject 
based on geometric measure theory. 

In a subject that is often quite technical we have not always striven for the 
gteatest generality, especially with respect to the modulus of continuity, estimates, 
integral conditions, and the like. We have instead confined ourselves to conditions 
determined by power functions: for example, Holder continuity rather than Dini 
continuity, U spaces in Chapter 8 rather than Orlicz spaces, structure conditions 
in terms of powers of Ipi rather than more general functions oflpl, etc. By suitable 
modification of the proofs the reader will usually be able to supply the appropriate 
generalizations. 

Historical material and bibliographical references are discussed primarily in 
the Notes at the end of the chapters. These are not intended to be complete but 
rather to supplement the text and place it in better perspective. A much more 
extensive survey of the literature until 1968 is contained in Miranda [MR 2]. The 
problems attached to the chapters are also intended to supplement the text; 
hopefully they will be useful exercises for the reader. 

Basic Notation 

IRn: Euclideann-space, n~ 2, with points X = (Xl' ... , xn), Xj e lR(realnumbers); 
Ixi =(1: X;)1/2; ifb= (bl' ... , bn) is an ordered n-tuple, then Ibl = (1: b;)1/2. 

IRn+ : half-space in IRn = {xelRnlxn > O}. 
as: boundary of the point set S; S=closure of S=S u as. 
S-S':{xeSlx$S'}. 
S' c c S: S' has compact closure in S; S' is strictly contained in S. 
Q: a proper open subset of IRn, not necessarily bounded; Q is a domain if it is 

also connected; I Q I = volume of Q. 
B(y): a ball in IRn with center y; Br(Y) is the open ball of radius r centered at y. 

2rr.n/2 

Wn: volume of unit ball in IRn = nr(n/2)' 

Dju=oujoxp Djp = o2ujoXj OX j ' etc.; Du=(Dlu, ... , Dnu) = gradient of u; 
D2u = [Diju] = Hessian matrix of second derivatives Djju, i,j = 1,2, ... , n. 
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Il= (PI' ... , Pn), Pi= integer ~O, with I III = L. Pi' is a multi-index; we define 

CO<Q) (Coal»: the set of continuous functions on Q <D). 
C"(Q): the set of functions having all derivatives of order ~ k continuous in 

Q (k=integer~O or k= (0). 
C'(D): the set of functions in C'(Q) all of whose derivatives of order ~ k have 

continuous extensions to Q. 
supp u: the support of u, the closure of the set on which u"# O. 
Co(Q): the set of functions in C'(Q) with compact support in Q. 

C= C(*, ... , *) denotes a constant depending only on the quantities appearing 
in parentheses. In a given context, the same letter C will (generally) be used to 
denote different constants depending on the same set of arguments. 



Part I 

Linear Equations 



Chapter 2 

Laplace's Equation 

Let D be a domain in R" and u a C2(Q) function. The Laplacian of u, denoted Llu, 
is defined by 

" (2.1) Llu= L Djju=div Du. 
i= 1 

The function u is called harmonic (subharmonic, superharmonic) in D if it satisfies 
there 

(2.2) Llu=O (~O, ~O). 

In this chapter we develop some basic properties of harmonic, subharmonic and 
superharmonic functions which we use to study the solvability of the classical 
Dirichlet problem for Lap/ace's equation, Llu=O. As mentioned in Chapter I, 
Laplace's equation and its inhomogeneous form, Poisson's equation, are basic 
models of linear elliptic equations. 

Our starting point here will be the well known divergence theorem in R". Let 
Do be a bounded domain with C1 boundary aDo and let v denote the unit outward 
normal to aDo. For any vector field w in C1(Do), we then have 

(2.3) S div w dx= S w·v ds 
no ana 

where ds indicates the (n - I )-dimensional area element in aDo. In particular if u 

is a C2(l'iO) function we have, by taking w = Du in (2.3), 

(2.4) f Llu dx= S Du·v ds= S :~ ds. 
no ana /lOu 

(For a more general formulation of the divergence theorem, see [K E 2].) 

2.1. The Mean Value Inequalities 

Our first theorem, which is a consequence of the identity (2.4), comprises the well 
known mean value properties of harmonic, subharmonic and superharmonic 
functions. 
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Theorem2.1. Let UEC2(D) satisfy L1u = 0 (~O, ~O) in D. Then for any ball 
B = BR(y) C cD, we have 

(2.5) u(y)=(~, ~) ~n 1 f U ds, 
nWn 

08 

(2.6) u(y)=(~,~) IRnfudX. 
Wn 8 

For harmonic functions, Theorem 2.1 thus asserts that the function value at the 
center of the ball Bis equal to the integral mean values over both the surface aB and 
B itself. These results, known as the mean value theorems, in fact also characterize 
harmonic functions; (see Theorem 2.7). 

Proof of Theorem 2.1. Let p E (0, R) and apply the identity (2.4) to the ball 
Bp=Bp(Y). We obtain 

S ~~ ds= f L1udx=(~, ~)O. 
o8 p 8 p 

Introducing radial and angular coordinates r = Ix - YI, W = x - Y, and writing 
r 

u(x)=u(y+rw), we have 

S OU fOu fOU ov ds= or (y+pw) ds=pn-I or O'+pw) den 

o8 p o8p a 1",1 = 1 a [ ] 
=pn-I op f u(y+pw)dW=p,,-1 op pl-n f uds 

1"'1=1 o8 p 

=(~, ~) o. 

Consequently for any p E (0, R), 

pl-n f uds=(~, ~)RI-n f uds 

and since 

lim pl-n f u ds=nwnu(y) 
p-o oBp 

relations (2.5) follow. To get the solid mean value inequalities, that is, relations 
(2.6), we write (2.5) in the form 

nWnpn-IU(Y)=(~, ~) f uds, p~R 
oBp 

and integrate with respect to p from Oto R. The relations (2.6) follow immediately. 0 
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2.2. Maximum and Minimum Principle 

With the aid of Theorem 2.1 the strong maximum principle for subharmonic 
functions and the strong minimum principle for superharmonic functions may be 
derived. 

Theorem 2.2. Let Au ~O (~O) in a and suppose there exists a point y E afor which 
u(y)= sup u (inf u). Then u is constant. Consequently a harmonic function cannot 

u u 
assume an interior maximum or minimum value unless it is constant. 

Proof Let Au~Oin a, M=sup u and define a M= {x E a I u(x)=M}. Byassump-
u 

tion aM is not empty. Furthermore since u is continuous, aM is closed relative to a. 
Let z be any point in aM and apply the mean value inequality (2.6) to the sub
harmonic function u-M in a ball B=BR(z)c ca. We therefore obtain 

O=U(Z)-M~_I_f(U-M) dx~O, 
wR" 

" B 

so that u= Min BR(z). Consequently aM is also open relative to a. Hence aM = a. 
The result for superharmonic functions follows by replacement of u by - u. 0 

The strong maximum and minimum principles immediately imply global 
estimates, namely the following weak maximum and minimum principles. 

Theorem 2.3. Let u E C2(U) n cl(U) with Au ~ 0 (~O) in a. Then, provided a is 
bountkd, 

(2.7) sup u=sup u (infu= infu). 
u au u au 

Consequently,for harmonic u 

inf u~u(x)~sup u, x E a. 
au au 

A uniqueness theorem for the classical Dirichlet problem for Laplace's and 
Poisson's equation in bounded domains now follows from Theorem 2.3. 

Theorem 2.4. Let u, v E C 2 (a) n CO(Q) satisfy Au=Av in a, U=V on aa. Then 
U=V in a. 

Proof Let w=u-v. Then Aw=O in a and w=O on aa.1t follows from Theorem 
2.3 that w=O in a. 0 

Note that also by Theorem 2.3, we have that if u and v are harmonic and sub
harmonic functions respectively, agreeing on the boundary aa, then v~u in a. 
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Hence the term subharmonic. A corresponding remark is true for superharmonic 
functions. Later in this chapter. we employ this property of C2(Q) subharmonic 
and superharmonic functions to expand their definition to larger classes of func
tions. In the next chapter. an alternate method of proof for Theorems 2.2. 2.3 and 
2.4 will be supplied when we treat maximum principles for general elliptic equa
tions; (see also Problem 2.1). 

2.3. The Harnack Inequality 

A further consequence of Theorem 2.1 is the following Harnack inequality for 
harmonic functions. 

Theorem 2.5. Let u be a non-negative harmonic/unction in Q. Then/or any bounded 
subdomain Q' ceQ. there exists a constant C depending only on n. fl' and Q such 
that 

(2.8) sup u ~ C inf u. 
U' U' 

Proof Let y E Q. B4R(y)eQ. Then for any two points XI' x2 E BR(y). we have 
by the inequalities (2.6) 

u(x l )= W IRII f u dx~ WIR" f u dx. 
II BR(>:,) II B2R(Y' 

u(X2) = ~ II f U dx ~ ~ f u dx. w II( R) wII( R)" 
1l1R(>:2' B2R( y\ 

Consequently we obtain 

(2.9) sup U~3" inf u. 
BR(Y' BR(Y' 

Now let Q'eeQ and choose X I .X2 EU' so that u (x l )= sup u,u(x 2 )= infu. 
U' U' 

Let reD' be a closed arc joining XI and x2 and choose R so that 4R<dist (r, oD). 
By virtue of the Heine-Borel theorem, r can be covered by a finite number N 
(depending only on Q' and D) of balls of radius R. Applying the estimate (2.9) in 
each ball and combining the resulting inequalities, we obtain. 

Hence the estimate (2.8) holds with C= 3"N • 0 

Note that the constant in (2.8) is invariant under similarity and orthogonal 
transformations. A Harnack inequality for weak solutions of homogeneous elliptic 
equations will be established in Chapter 8. 
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2.4. Green's Representation 

As a prelude to existence considerations we derive now some further consequences 
of the divergence theorem, namely, the Green identities. Let U be a domain for 
which the divergence theorem holds and let u and v be C2(n) functions. We select 
w = vDu in the identity (2.3) to obtain Green'sfirst identity: 

(2.10) f v ~u dx+ f Du·Dvdx= f v !~ ds. 
a n aa 

Interchanging u and v in (2.10) and subtracting, we obtain Green's second identity: 

(2.11) f (v Au-u Av) dx= f (v :~ -u ::) ds. 
a aa 

Laplace's equation has the radially symmetric solution ,2 -II for n > 2 and log' for 
n=2, , being radial distance from a fixed point. To proceed further from (2.11), 
we fix a point y in U and introduce the normalizedJundamental solution of Laplace's 
equation: 

(2.12) I I I 12 - 11 

(2 ) x-Y , 
n -n w 

r(x-y)=r(lx-yl)= I II 

21t log Ix - yl , 

n>2 

n=2. 

By simple computation we have 

D.r(x-y)=_I_(x.- y.)lx-yl-II; 
I nw" I I 

(2.13) 
1 

Dijr(x- y)= nw {Ix->12~ij-n(xi-Yi)(Xj - y)} Ix-yl-II-2. 
II 

Clearly r is harmonic for x ;f; y. For later purposes we note the following derivative 
estimates: 

(2.14) 
I 

ID . .r(x - y)1 ~-Ix-yl-II. 
IJ WII 

IDfJr(x - y)1 ~ Clx - yI2-1I- lfJ1, C = C(n,IPI). 

The singularity at x = y prevents us from using r in place of v in Green's second 
identity (2.11). One way of overcoming this difficulty is to replace U by U -lip 
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where Bp = Bp(j·) for sufficiently small p. We can then conclude from (2.11) that 

(2.15) f f( ou or) f( ou or) r Audx= r--u- ds+ r--u- ds. 
ov ov ov OV 

n-Bp iJn iJBp 

Now 

f ou fOU 
r iJv ds=r(p) ev ds 

iJBp iJBp 

~nw"p"-l rep) sup IDul- 0 as p - 0 
Bp 

and 

f u~~ ds=-r'(p) f uds (recall that Y is outer normal to D-Bp) 
iJBp iJBp 

-I f = u ds --+ - u(y) as p --+ O. 
nwnP" 1 

iJBp 

Hence letting p tend io zero in (2.15) we arrive at Green's representationlormula: 

(2.16) u(y)= f(u~~ (X-y)-r<x-y)::)ds+ fr<x-y) Audx, (yem. 
w n 

For an integrable function I, the integral f r(x - y)/(x) dx is called the Newtonian 

n 
potential with density I. If u has compact support in R", then (2.16) yields the 
frequently useful representation formula, 

(2.17) u(y)= f r<x-y) Au(x)dx. 

For harmonic u, we also obtain the representation 

(2.18) u(y)= f (u~~ (X-y)-r<x-y)::)ds. (yem. 
iJn 

Since the integrand above is infinitely differentiable and, in fact, also analytic with 
respect to y, it follows that u is also analytic in D. Thus harmonic functions are 
analytic throughout their domain of definition and therefore uniquely determined 
by their values in any open subset. 

Now suppose that he C1cl.h n C2(m satisfies Ah=O in D. Then again by 
Green's second identity (2.11) we obtain 

(2.19) - f(U;~-h~:)ds=fhAUdX. 
iJn n 
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Writing G=r+h and adding (2.16) and (2.19) we then obtain a more general 
version of Green's representation formula: 

(2.20) u(y)= S (u ~~ -G ~~)dS+ S G Llu dx. 
oQ Q 

If in addition G = 0 on cQ we have 

(2.21) u(y)= S u ~~ ds+ S G Llu dx 
oQ Q 

and the function G=G(x,y) is called the (Dirichlet) Green's function for the 
domain Q, sometimes also called the Green's function of the first kind for Q. By 
Theorem 2.4, the Green's function is unique and from the formula (2.21) its 
existence implies a representation for a C1(Q) n C2(.0) harmonic function in terms 
of its boundary values. 

2.5. The Poisson Integral 

When the domain Q is a ball the Green's function can be explicitly determined by 
the method of images and leads to the well known Poisson integral representation 
for harmonic functions in a ball. Namely, let BR = BR(O) and for x E BR, X =FO let 

(2.22) 

denote its inverse point with respect to BR ; if x=O, take X=OC!. It is then easily 
verified that the Green's function for BR is given by 

(2.23) { (IYI) T<lx-yl)-r -Ix- jil ' Y=FO 
G(x,y)= R 

r(lxl)-r(R), y=O. 

=nJlxl2 +IYI2_2x.y)-r( J(lx~Yly +R2 -2X'Y) 

for all x, y E BR , X=Fy. 

The function G defined by (2.23) has the properties 

(2.24) G(x,y)=G(y,x), G(x,y)~O forx,YEB R • 
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Furthermore, direct calculation shows that at x E iJBR the normal derivative of G 
is given by 

(2.25) 
oG iJG 
- -
ov olxl 

Hence if u E C 2(BR) n Ct(BR) is harmonic, we have by (2.21) the Poisson integral 
formula: 

(2.26) 

The right hand side of formula (2.26) is called the Poisson integral of u. A simple 
approximation argument shows that the Poisson integral formula continues to hold 
for U E C 2(BR) n CO(BR). Note that by taking y=O, we recover the mean value 
theorem for harmonic functions. In fact all the previous theorems of this chapter 
could have been derived as consequences of the representation (2.21) with Q= 
BR(O). 

To establish the existence of solutions of the classical Dirichlet problem for balls 
we need the converse result to the representation (2.26), and we prove this now. 

Theorem 2.6. Let B = BR(O) and cp he a continuousfunction on oB. Then the function 
udefined hy 

(2.27) 

belongs to C1(B) n c°(i~) and satisfies Llu=O in B. 

Proof That u defined by (2.27) is harmonic in B is evident from the fact that G, 
and hence aGio\', is harmonic in x, or it may be verified by direct calculation. To 
establish the continuity ofu on oB, we use the Poisson formula (2.26) for the special 
case U= I to obtain the identity. 

(2.28) f K(x, y) d\.= I for all x E B 
uB 

where K is the Poisson kernel 

(2.29) 

Of course the integral in (2.28) may be evaluated directly but this is a complicated 
calculation. Now let Xo E oB and £ be an arbitrary positive number. Choose 15>0 
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so that l<p(x) - <p(xo)1 < e if Ix - xol <15 and let 1<p1 ~ M on oB. Then if Ix - xol < 15/2, 
we have by (2.27) and (2.28) 

lu(x) - u(xo)1 = If K(x, y)(q>(y) - <p(Xo» dsyj 
iJB 

~ f K(x, Y)I<p(y) -<p(xo)1 dsy 
iy-xol"'o 

+ f K(x, Y)I<p(y) - <p(Xo>l dsy 
Iy-xol>o 

If now Ix-xol is sufficiently small it is clear that lu(x)-u(xo)1 <2e and hence u is 
continuous at xo. Consequently u E C°(13) as required. 0 

We note that the preceding argument is local; that is, if <p is only bounded and 
integrable on oB, and continuous at x o' then u(x) -+ q>(xo) as x -+ xo. 

2.6. Convergence Theorems 

We consider now some immediate consequences of the Poisson integral formula. 
The following three theorems will not however be required for the later develop
ment. We show first that harmonic functions can in fact be characterized by their 
mean value property. 

Theorem 2.7. A CO(.Q) function u is harmonic if and only if for every ball 
B=BR(y)c cD it satisfies the mean value property, 

(2.30) u(y) = 1 1 f u ds. 
nw R" 

" iJB 

Proof By Theorem 2.6, there exists for any ball Be cD a harmonic function 
h such that h = u on cB. The difference w = u - h will then be a function satisfying 
the mean value property on any ball in B. Consequently the maximum principle 
and uniqueness results of Theorems 2.2,2.3 and 2.4 apply to w since the mean value 
inequalities were the only properties of harmonic functions used in their derivation. 
Hence w=O in B and consequently u must be harmoFl.ic in Q. 0 

As an immediate consequence of the preceding theorem we have: 

Theorem 2.8. The limit of a uniformly convergent sequence of harmonic functions is 
harmonic. 
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It follows from Theorem 2.8, that if {un} is a sequence of harmonic functions in 
a bounded domain Q, with continuous boundary values {qJnl which converge 
uniformly on oQ to a function qJ, then the sequence {un: converges uniformly (by 
the maximum principle) to a harmonic function having the boundary values qJ on 
aQ, By means of Harnack's inequality, Theorem 2.5, we can also derive, from 
Theorem 2.8, Harnack's convergence theorem. 

Theorem 2.9. Let {un} be a monotone increasing sequence of harmonic functions 
in a domain Q and suppose that for some point y E Q, the sequence {un(y)} is bounded. 
Then the sequence converges uniformly on any bounded subdomain Q' ceQ to a 
harmonic function. 

Proof The sequence {un( y) 1 will converge, so that for arbitrary E: > 0 there is a 
number N such that O~um(y)-un(Y)<E: for all m~n>N. But then by Theorem 
2.5, we must have 

sup lum(x) -un(x)1 < CE: 
n' 

for some constant C depending on Q' and Q. Consequently {unl converges uni
formly and by virtue of Theorem 2.8, the limit function is harmonic. 0 

2.7. Interior Estimates of Derivatives 

By direct differentiation of the Poisson integral it is possible to obtain interior 
derivative estimates for harmonic functions. Alternatively, such estimates also 
follow from the mean value theorem. ForletubeharmonicinQand B= BR(Y)c c Q. 
Since the gradient Du is also harmonic in Q it follows by the mean value and 
divergence theorems that 

and hence 

(2.31 ) 

Du(y)=_l_ fDu dX=~R fUll ds, 
w Rn w n 

n B " iJB 

n 
IDu(y)1 ~- sup lui 

R iJB 

n 
IDu(y)1 ~d sup lui, 

y n 

where dy=dist (y, am. By successive application of the estimate (2.31) in equally 
spaced nested balls we obtain an estimate for higher order derivatives: 
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Theorem 2.10. Let u be harmonic in Q and let Q' be any compact subset ofQ. Then 
for any multi-index <2 we have 

(2.32) s~~ ID'ul ~(n~lrl s~p lui 

where d=dist (Q', cQ). 

An immediate consequence of the bound (2.32) is the equicontinuity on com
pact subdomains of the derivatives of any bounded set of harmonic functions. 
Consequently by Arzela's theorem, we see that any bounded set of harmonic 
functions forms a normalfamily; that is, we have: 

Theorem 2.11. Any bounded sequence of harmonic functions on a domain Q contains 
a subsequence converging uniformly on compact suhdomains of Q to a harmonic 
function. 

The previous convergence theorem, Theorem 2.8, would also folIow im
mediately from Theorem 2.11. 

2.8. The Dirichlet Problem; the Method of Subharmonic Functions 

We are in a position now to approach the question of existence of solutions of the 
classical Dirichlet problem in arbitrary bounded domains. The treatment here will 
be accomplished by Perron's method of subharmonic functions [PE] which relies 
heavily on the maximum principle and the solvability of the Dirichlet problem in 
baIls. The method has a number of attractive features in that it is elementary, it 
separates the interior existence problem from that of the boundary behaviour of 
solutions, and it is easily extended to more general classes of second order elIiptic 
equations. There are other welI known approaches to existence theorems such as 
the method of integral equations, treated for example in the books [KE 2] [GU], 
and the variational or Hilbert space approach which we describe in a more general 
context in Chapter 8. 

The definition of C2(Q) subharmonic and superharmonic function is general
ized as follows. A cl(Q) function u wilI be called subharmonic (superharmonic) in 
Q if for every ball Bee Q and every function h harmonic in B satisfying u ~ ( ~)h 
on ('B, we also have u ~ ( ~)h in B. The following properties of CO(Q) subharmonic 
functions are readily established: 

(i) If u is subharmonic in a domain Q, it satisfies the strong maximum principle 
in Q; and if L' is superharmonic in a bounded domain Q with v ~ u on cQ, then 
either l' > U throughout Q or v == u. To prove the latter assertion, suppose the 
contrary. Then at some point Xo E Q we have 

(u-l')(X O)= sup (u-v)=M~O, 
n 
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and we may assume there is a ball B=B(xo) such that u-u¢'-M on aBo Letting 
U, v denote the harmonic functions respectively equal to u, u on aB (Theorem 2.6), 
one sees that 

M~ sup (u-v)~(u-v)(xo)~(u-v)(xo)=M, 
oB 

and hence the equality holds throughout. By the strong maximum principle for 
harmonic functions (Theorem 2.2) it follows that u-v=M in B and hence 
u-v=M on oB, which contradicts the choice of B. 

(ii) Let u be subharmonic in D and B be a ball strictly contained in D. Denote 
by u the harmonic function in B (given by the Poisson integral of u on aB) satisfying 
u = u on oB. We define in Q the harmonic lifting of u (in B) by 

(2.33) {
U(X), x E B 

U(x)= 
u(x), xED-B. 

Then the function U is also subharmonic in D. For consider an arbitrary ball 
B' c cD and let h be a harmonic function in B' satisfying h ~ U on oB'. Since u~ U 
in B' we have u ~ h in B' and hence U ~ h in B' - B. Also since U is harmonic in B, 
we have by the maximum principle U~h in B 11 B'. Consequently U~h in B' and 
U is subharmonic in D. 

(iii) Let u l' U2 ' ... , UN be subharmonic in D. Then the function u(x) = max 
{u 1(x), ... , uN(x)} is also subharmonic in Q. This is a trivial consequence of the 
definition of subharmonicity. Corresponding results for superharmonic functions 
are obtained by replacing u by - u in properties (i), (ii) and (iii). 

Now let D be bounded and qJ be a bounded function on aD. A Com) sub
harmonic function u is called a subfunction relative to qJ if it satisfies u ~ qJ on aD. 
Similarly a C°(.Q) superharmonic function is called a superfunction relative to qJ if it 
satisfies u ~ qJ on aD. By the maximum principle every subfunction is less than or 
equal to every superfunction. In particular, constant functions ~ inf qJ (~sup qJ) 

oQ oQ 
are subfunctions (superfunctions). Let S", denote the set of subfunctions relative 
to qJ. The basic result of the Perron method is contained in the following theorem. 

Theorem 2.12. Thefunction u(x)= sup v(x) is harmonic in D. 
veS." 

Proof By the maximum principle any function v E S", satisfies v ~sup qJ, so that u is 
well defined. Let y be an arbitrary fixed point of D. By the definition of u, there exists 
a sequence {un} C S", such that vn(Y) - u(y). By replacing un with max (un' inf qJ), 

we may assume that the sequence {vn} is bounded. Now choose R so that the 
ball B= BR(Y)c cD and define Vn to be the harmonic lifting of Un in B according 
to (2.33). Then Vn E S"" Vn(y) - u(y) and by Theorem 2.11 the sequence {Vn} 
contains a subsequence {VnJ converging uniformly in any ball Bp(Y) with p < R 
to a function U that is harmonic in B. Clearly v ~ u in Band v(y) = u(y). We claim 
now that in fact v = u in B. For suppose v(z) < u(z) at some z E B. Then there exists 
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a function U E SqJ such that v(z) < u(z). Defining W k = max (u, v"J and also the 
harmonic liftings Wk as in (2.33), we obtain as before a subsequence of the 
sequence { Wk } converging to a harmonic function w satisfying v ~ w ~ u in Band 
v(y)=w(y)=u(y). But then by the maximum principle we must have v=w in B. 
This contradicts the definition of u and hence u is harmonic in a. 0 

The preceding result exhibits a harmonic function which is a prospective 
solution (called the Perron solution) of the classical Dirichlet problem: L1u=O, 
u = ep on aa. Indeed, if the Dirichlet problem is solvable, its solution is identical 
with the Perron solution. For let w be the presumed solution. Then clearly WE SqJ 
and by the maximum principle w~ u for all u E SqJ' We note here also that the proof 
of Theorem 2.12 could have been based on the Harnack convergence theorem, 
Theorem 2.9, instead of the compactness theorem, Theorem 2.11; (see Problem 
2.10). 

In the Perron method the study of boundary behaviour of the solution is 
essentially separate from the existence problem. The continuous assumption of 
boundary values is connected to the geometric properties of the boundary through 
the concept of barrier function. Let e be a pOint of aa. Then a C°(.Q) function 
W = w~ is called a barrier at e relative to a if: 

(i) w is superharmonic in a; 
(ii) 1t'>0 in n-e; w (e)=O. 

A more general definition of barrier requires only that the superharmonic 
function W be continuous and positive in a, and that w(x) -+ 0 as x -+ e. The 
results of this section are valid for these weak barriers as well (see [HL, p. 168], for 
example). An important feature of the barrier concept is that it is a local property 
of the boundary aa. Namely, let us define W to be a local barrier at e E aa if there 
is a neighborhood N of e such that w satisfies the above definition in anN. Then 
a barrier at e relative to a can be defined as follows. Let B be a ball satisfying 
e E Bee Nand m= inf w>O. The function 

N-B 

_ {min (m, w(x)), x En n B 
w(x)= _ 

m, xEa-B 

is then a barrier at e relative to a, as one sees by confirming properties (i) and (ii). 
Indeed, w is continuous in n and is superharmonic in a by property (iii) of sub
harmonic functions; property (ii) is immediate. 

A boundary point will be called regular (with respect to the Laplacian) if there 
exists a barrier at that point. 

The connection between the barrier and boundary behavior of solutions is 
contained in the following. 

Lemma 2.13. Let u he the harmonic junction defined in a by the Perron method 
(Theorem 2. I 2). If' e is a regular houndary point of a and ep is continuous at e, then 
u(x) -+ epee) as x -+ e. 
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Proof Choose c; > O. and let M = sup 1<p1. Since ~ is a regular boundary point, there 
is a barrier w at ~ and. by virtue of the continuity of <p, there are constants band k 

such that l<p(x)- <p(~)1 <c; if Ix - ~I < b. and kw(x)~ 2M iflx- ~I ~ b, The functions 
<p(~)+ c; + kw, <p(~) -c;- kw are respectively superfunction and subfunction relative 
to <po Hence from the definition of u and the fact that every superfunction dominates 
every subfunction, we have in Q. 

<p(~) - c; - kw(x)~ u(x)~ <p(~)+ e+ kw(x) 

or 

lu(x) - <p(~)1 ~ c; + kw(x), 

Since w(x) -> 0 as x -> ~, we obtain u(x) -> <p(~) as x ->~, 0 
This leads immediately to 

Theorem 2.14. The classical Dirichlet problem in a bounded domain is solvable for 
arbitrary continuous boundary values if and only if the boundary points are all regular. 

Proof If the boundary values <p are continuous and the boundary oQ consists of 
regular points, the preceding lemma states that the harmonic function provided by 
the Perron method solves the Dirichlet problem. Conversely, suppose that the 
Dirichlet problem is solvable for all continuous boundary values. Let ~ E oQ. Then 
the function <p(x) = Ix - ~I is continuous on oQ and the harmonic function solving 
the Dirichlet problem in Q with boundary values <p is obviously a barrier at ~, 
Hence ~ is regular, as are all points of cQ. 0 

The important question remains: For what domains are the boundary points 
regular? It turns out that general sufficient conditions can be stated in terms of 
local geometric properties of the boundary. We mention some of these conditions 
below. 

If n= 2, consider a boundary point Zo of a bounded domain Q and take the 
origin at Zo with polar coordinates r, (J. Suppose there is a neighborhood N of Zo 

such that a single valued branch of (J is defined in Q n N, or in a component of 
Q n N having Zo on its boundary. One sees that 

I log r 
11'= - Re --= ---0-=-

log Z log2 r + 82 

is a (weak) local barrier at Zo and hence Zo is a regular point. In particular, Zo is 
a regular boundary point if it is the endpoint of a simple arc lying in the exterior 
of Q. Thus the Dirichlet problem in the plane is always solvable for continuous 
boundary values in a (bounded) domain whose boundary points are each accessi
ble from the exterior by a simple arc. More generally, the same barrier shows that 
the boundary value problem is solvable if every component of the complement of 
the domain consists of more than a single point. Examples of such domains are 
domains bounded by a finite number of simple closed curves. Another is the unit 
disc slit along an arc; in this case the boundary values can be assigned on opposite 
sides of the slit. 
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For higher dimensions the situation is substantially different and the Dirichlet 
problem cannot be solved in corresponding generality. Thus. an example due to 
Lebesgue shows that a closed surface in three dimensions with a sufficiently sharp 
inward directed cusp has a non-regular point at the tip of the cusp; (see for 
example [CH]). 

A simple sufficient condition for solvability in a bounded domain Qc ~n is 
that Q satisfy the exterior sphere condition; that is. for every point ~ E aQ, there 
exists a ball B= BR(y) satisfying B n Q=~. Ifsuch a condition is fulfilled, then the 
function lI" given by 

(2.34) {
R2 - n _IX_YI 2 -n forn~3 

w(x)= I Ix- yl 
og-- forn=2 

R 

will be a barrier at ~. Consequently the boundary points of a domain with C2 

boundary are all regular points; (see Problem 2.11 ). 

2.9. Capacity 

The physical concept of capacity provides another means of characterizing regular 
and exceptional boundary points. Let Q be a bounded domain in ~n(n ~ 3) with 
smooth boundary (IQ, and let u be the harmonic function (often called the con
ductor potential) defined in the complement of Q and satisfying the boundary 
conditions u = 1 on cQ and u = 0 at infinity. The existence of u is easily established 
as the (unique) limit of harmonic functions u' in an expanding sequence of bounded 
domains having aQ as an inner boundary (on which u' = 1) and with outer 
boundaries (on which 1/' = 0) tending to infinity. If 1: denotes aQ or any smooth 
closed surface enclosing Q, then the quantity 

(2.35) cap Q = - f~~ ds = f IDul 2 dx v = outer normal 

l: 1Ji"-U 

is defined to be the capacity of Q. In electrostatics, cap Q is within a constant factor 
the total electric charge on the conductor oQ held at unit potential (relative to 
infinity). 

Capacity can also be defined for domains with nonsmooth boundaries and for 
any compact set as the (unique) limit of the capacities of a nested sequence of 
approximating smoothly bounded domains. Equivalent definitions of capacity can 
be given directly without use of approximating domains (e.g., see [LK]). In 
particular, we have the variational characterization 

cap Q = inf fIDVI2. 
veK 

(2.36) 



28 2. Laplace's Equation 

where 

K = {VECA(lRn)lv = Ion U}. 

To investigate the regularity of a point Xo E au, consider for any fixed A. E (0, 1) 
the capacity 

The Wiener criterion states that Xo is a regular boundary point of U if and only if the 
series 

ro 

(2.37) 2: CiA.j (n-2) 

j=O 

diverges. 
For a discussion of capacity and proof of the Wiener criterion we refer to the 

literature, e.g., [KE 2, LK]. In Chapter 8 this condition for regularity will be proved 
for a general class of elliptic operators in divergence form. 

Problems 

2.1. Derive the weak maximum principle for C2(Q) subharmonic functions from 
a consideration of necessary conditions for a relative maximum. 

2.2. Prove that if Au = 0 in U and u = au/av = 0 on an open, smooth portion of au, 
then u is identically zero. 

2.3. Let G be the Green's function for a bounded domain U. Prove 

a) G(x, y) = G(y, x) for all x, y E U, x t= y; 

b) G(x, y)<O for all x, y E U, xt= y; 

c) f G(x, y)/(y) dy--+ 0 as x --+ au, if/is bounded and integrable on U. 
n 

2.4. (Schwarz reflection principle.) Let U+ be a subdomain of the half-space 
xn > 0 having as part of its boundary an open section T of the hyperplane xn = O. 
Suppose that u is harmonic in U+, continuous in U+ u T, and that u=O on T. 
Show that the function U defined by 



Problems 29 

is harmonic in the domain Q+ u T u Q-, where Q- is the reflection of Q+ ill 

x.=O(i.e.,Q-={(xl, ... ,x.)EIR·I(x" ... , -X.)EQ+}). 

2.5. Determine the Green's function for the annular region bounded by two 
concentric spheres in IR·. 

2.6. Let u be a non-negative harmonic function in a ball BR(O). Deduce from the 
Poisson integral formula, the following version of Harnack's inequality 

2.7. Show that a cl(Q) function u is subharmonic in Q ifand only ifit satisfies the 
mean value inequality locally; that is, for every y E Q there exists b = b(y) > 0 such 
that 

u(y)~ I -I f uds foraIlR~b. 
nw.R· 

iJBR(Y) 

2.8. An integrable function u in a domain Q is called weakly harmonic (subharmonic, 
superharmonic) in Q if 

f u Acp dx = ( ~, ~) 0 
Q 

for all functions cp ~ 0 in C2(Q) having compact support in Q. Show that a CO(Q) 

weakly harmonic (subharmonic, superharmonic) function is harmonic (sub
harmonic, superharmonic). 

2.9. Show that for C 2(Q) functions u, the conditions: (i) Au ~ 0 in Q; (ii) u is 
subharmonic in Q; (iii) u is weakly subharmonic in Q, are equivalent. 

2.10. Prove Theorem 2.12 using Theorem 2.9 instead of Theorem 2.11. 

2.11. Show that a domain Q with C 2 boundary aQ satisfies an exterior sphere 
condition. 

2.12. Show that the Dirichlet problem is solvable for any domain Q satisfying an 
exterior cone condition; that is, for every point ~ E oQ there exists a finite right 
circular cone K, with vertex ~, satisfying K !\ Q=~. At each point ~ E cQ taken 
as origin, show that a suitable local barrier can be chosen in the form w=rA!(fI) 

where () is the polar angle. 

2.13. Let u be harmonic in Qc IR·. Use the argument leading to (2.31) to prove 
the interior gradient bound, 

n 
IDu(xo)1 ~d [sup u-u(xo)), do= dist (xo , cQ). 

° Q 
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If u ~ ° in Q infer that 

2.14. (a) Prove Liouville's theorem: A harmonic function defined over IR" and 
bounded above is constant. 

(b) If n = 2 prove that the Liouville theorem in part (a) is valid for subharmonic 
functions. 

(c) If n > 2 show that a bounded subharmonic function defined over IR" need 
not be constant. 

2.15. Let U E C 2 (Q), U = ° on oQ E ct. Prove the interpolation inequality: For 
every e > 0, 

2.16. Prove Theorem 2.12 by finding in every ball Bee Q a monotone increasing 
sequence of harmonic functions that are restrictions of subfunctions on B and that 
converge uniformly to u on a dense set of points in B. Hence show that Theorems 
2.12 and 2.14 can be proved without use of the strong maximum principle. 

2.17. Show that the volume integral in (2.35) is defined, and prove the equivalence 
of the capacity definitions (2.35) and (2.36). 

2.18. Let u be harmonic in (open, connected) Q c IR", and suppose Bc(xo) ceQ. 
If a ~ b ~ e, where b2 = ae, show that 

f u(xo + aw)u(xo + ew) dw = f u 2(xo + bw) dw. 

Iwl= 1 Iwl= 1 

Hence, conclude that if u is constant in a neighbourhood it is identically constant. 
(Cf. [GN].) 



Chapter 3 

The Classical Maximum Principle 

The purpose of this chapter is to extend the classical maximum principles for the 
Laplace operator, derived in Chapter 2, to linear elliptic differential operators of 
the form 

(3.1) Lu=aij(x)Dip+ bi(x)Diu + c(x)u, di = aii, 

where x = (Xl' ...• xn) lies in a domain D of IRn. n;;?; 2. It will be assumed. unless 
otherwise stated, that u belongs to C2(Q). The summation convention that repeated 
indices indicate summation from 1 to n is followed here as it will be throughout. 
L will always denote the operator (3.1). 

We adopt the following definitions: 
L is elliptic at a point xeD if the coefficient matrix [di(x)] is positive; that is. if 
l(x), A(x) denote respectively the minimum and maximum eigenvalues of [aij(x)]. 
then 

(3.2) 0 < l(x)I~12::;;; di(x)~i~i::;;;A(x)I~12 

for all ~ = (~1' ...• ~n) e IRn - {O}. If l > 0 in D, then L is elliptic in D, and strictly 
elliptic if A.;;?;lo>O for some constant A.o. If A/A. is bounded in D. we shall call L 
uniformly elliptic in D. Thus the operator D 11 + XI D22 is elliptic but not uniformly 
elliptic in the half plane. Xl> 0, while it is uniformly elliptic in strips of the form 
(IX, p) x IR where 0 < IX < p < 00. 

Most results concerning elliptic operators of the form (3.1) require additional 
conditions limiting the relative importance of the lower order terms bi DiU. cu with 
respect to the principal term aijDiju. The condition 

Ibi(x)1 ~ . , 
-l---...::const<oo. 1=1 •... ,n, xeD 
JI.(x) 

(3.3) 

will be assumed throughout this chapter. By then considering L' =). - 1 L in place 
of L we can reduce to the case where A. = 1 and the bi are bounded. If. in addition, 
L is uniformly elliptic, we can also take the di to be bounded. Note that if the 
coefficients aij, bi are continuous in D, then on any bounded subdomain D' c cD. 
L is uniformly elliptic and (3.3) holds. The coefficient c will also be subject to 
restrictions but these will vary and consequently be indicated in the appropriate 
hypotheses. 
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The maximum principle is an important feature of second order elliptic equa
tions that distinguishes them from equations of higher order and systems of 
equations. In addition to its many applications, the maximum principle provides 
pointwise estimates that lead to a more definitive theory than would be otherwise 
available. In this chapter, most of the results will be based solely on the ellipticity 
of L and not on other special properties of the coefficients (such as smoothness). 
I t is this generality which makes the maximum principle useful in apriori estimation 
of solutions, especially in nonlinear problems. 

3.1. The Weak Maximum Principle 

For many purposes it suffices to have the following weak maximum principle. 

Theorem 3.1. Let L be elliptic in the bounded domain Q. Suppose that 

(3.4) Lu~O (~O) in Q, c=OinQ, 

with u E C2(Q) n CO(Q). Then the maximum (minimum) ofu in Q is achieved on oQ, 
that is, 

(3.5) sup u = sup u (inf u = inf u). 
o 00 0 00 

It is apparent that the conclusion remains valid if Ibill A is only locally bounded 
in Q, for example if aij, bi E CO(Q). Also, if u is not assumed continuous in Q, the 
conclusion (3.5) can be replaced by 

(3.6) sup U= lim sup u(x) (inf U= lim infu(x» 

Proof It is readily seen that if Lu > 0 in Q, then a strong maximum principle 
holds; that is, u cannot achieve an interior maximum in Q. For at such a point 
x o' Du(xo) =0 and the matrix D2u(xO) = [DiP(xO)] is nonpositive. But the matrix 
[aij(xo>J is positive since L is elliptic. Consequently Lu(xo)=aij(xo)DiP(XO)~O, 
contradicting Lu>O. (Note that only the semi-definiteness of the coefficient 
matrix [aij] is needed in this argumenL) 

By hypothesis (3.3), WIIA~bo=constanL Then since all~A, there is a suffi
ciently large constant}' for which 

Hence for any £>0, L(u+£ eYX,»O in Q so that 

by the above. Letting e --+ 0, we see that sup u = sup u, as asserted in the theorem. 0 
o on 
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Remark. It is clear from the proof that the theorem holds under the weaker 
hypothesis that the coefficient matrix [a ii] is non-negative and that for some k the 
ratio WI/akk is locally bounded. 

I-t is convenient to introduce the following terminology suggested by the 
maximum principle: a function satisfying Lu = 0 (~O, ~ 0) in a is a solution 
(subsolution, supersolution) of Lu=O in Q. When L is the Laplacian, these terms 
correspond respectively to harmonic, subharmonic and superharmonic functions. 

Let us suppose more generally that c ~ 0 in O. By considering the subset 
O+cO in which u>O, one sees that if Lu~O in 0, then Lou=aijDiP+biDiu~ 
- cu ~ 0 in Q + and hence the maximum of u on n + must be achieved on an + and 
hence also on 00. Thus, writing u+ = max (u, 0), u- = min (u, 0) we obtain: 

Corollary 3.2. Let L be elliptic in the bounded domain O. Suppose that in a 

(3.7) Lu~O (~O), c~O, 

with u E Co(n). Then 

(3.8) supu ~ supu+ (infu~ infu-). 
D aD D aD 

IfLu=O in 0, then 

(3.9) sup lui = sup lui. 
D aD 

In this corollary, the condition c ~ 0 cannot be relaxed in general to allow 
c > 0, as is evident from the existence of positive eigenvalues /C for the problem: 
Au+/Cu=O, u=o on cQ. An immediate and important application of the weak 
maximum principle is to the problem of uniqueness and continuous dependence of 
solutions on their boundary values. From Corollary 3.2 follows automatically a 
uniqueness result for the classical Dirichlet problem for operators L, and a com
parison principle, which is the typical form of application of the corollary. 

Theorem 3.3. Let L be elliptic in 0 with c~O in Q. Suppose that u and v are 
functions in C2(Q) n CO(Q) satisfying Lu = Lv in 0, u = von ao. Then u = v in Q. If 
Lu ~ Lv in 0 and u ~ t· on aQ, then u ~ v in O. 

3.2. The Strong Maximum Principle 

Although the weak maximum principle suffices for most applications, it is often 
necessary to have the strong form which excludes the assumption of a non-trivial 
interior maximum. We shall obtain such a result for locally uniformly elliptic 
operators by means of the following frequently useful boundary point lemma. The 
domain 0 is said to satisfy an interior sphere condition at Xo E ao if there exists a 
ball B c a with Xo E aB, (that is, the complement of 0 satisfies an exterior sphere 
condition at xo). 
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Lemma 3.4. Suppose that L is uniformly elliptic. c=O and Lu~O in U. Let 
Xo E au be such that 

(i) u is continuous at xo; 

(ii) u(xo»u(x) for all x E U; 
(iii) au satisfies an interior sphere condition at xo. 

Then the outer normal derivative ofu at x o, if it exists, satisfies the strict inequality 

(3.10) 

If c ~ 0 and cl)" is bounded, the same conclusion holds provided u(xo) ~ 0, and if 
u(xo) = 0 the same conclusion holds irrespective of the sign of c. 

Proof Since U satisfies an interior sphere condition at xo' there exists a ball 
B=BR(y)c U with Xo E aBo For O<p<R, we introduce an auxiliary function v by 
defining 

where r = Ix - yl > p and (X is a positive constant yet to be determined. Direct 
calculation gives for c ~ 0 

Lv(x)=e-",,2 [4(X2aij(xj - >'j)(xj - Y) - 2(X(aii +bi(x j- Yi»] + cv 

~e-2r2 [4(X2).,(x)r2-2(X(di+lblr)+c], b=(b', ... , b"). 

By assumption aiil)., Ibll)., and cl). are bounded. Hence (X may be chosen large 
enough so that Lv~ 0 throughout the annular region A = BR(y) - Bp(Y). Since 
u-u(xo)<O on aBp(Y) there is a constant e>O for which u-u(xo)+ ev~O on 
aBp(Y). This inequality is also satisfied on cBR(y) where v=O. Thus we have 
L(u-u(xo)+ev)~ -cu(xo)~O in A, and u-u(xo)+ev~O on aA. The weak 
maximum principle (Corollary 3.2) now implies that u - u(xo) + ev ~ 0 throughout 
A. Taking the normal derivative at xo' we obtain, as required, 

For c of arbitrary sign, if u(xo) = 0 the preceding argument remains valid if L is 
replaced everywhere by L - c+. 0 

More generally, whether or not the normal der.ivative exists, we get 

(3.11) I· . f u(xo)-u(x) 0 
lmlD > , 

" .... "0 Ix-xol 

where the angle between the vector Xo - x and the normal at Xo is less than Tel2 - J 
for some fixed J > O. 
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Although the interior sphere condition can be relaxed somewhat, it is not possible 
to assert (3.11) without suitable smoothness of aD at X o' For example, let L = LI and 
D c ~2 be the region in the right-half-plane in which u = Re (zjlog z) < O. An 
elementary calculation shows that aD c C1 near z = 0 and ux(O,O) = 0, so that 
(3.11) is false. 

We are now in a position to derive the following strong maximum principle of 
E. Hopf [HO I]. 

Theorem 3.5. Let L be uniformly elliptic, c=O and Lu~O( ~O) in a domain D 
(not necessarily bounded). Then ifu achieves its maximum (minimum) in the interior 
olD, u is a constant. If c~O and ciA. is bounded, then u cannot achieve a non-negative 
maximum (non-positive minimum) in the interior oID unless it is constant. 

The conclusion obviously remains valid if L is only locally uniformly elliptic 
and IbV A., ciA. are only locally bounded. 

Proof If we assume, contrary to the theorem, that u is non-constant and achieves 
its maximum M~O in the interior of D, then the set D- on which u< M satisfies 
D- cD and cD- n D# ¢. Let X o be a point in D- that is closer to cD- than to cD, 
and consider the largest ball BcD- having Xo as center. Then u(y)=M for some 
point YEa B while u < M in B. The preceding lemma implies that Du( y) # 0, which 
is impossible at the interior maximum y. 0 

If c < 0 at some point, then the constant of the theorem is obviously zero. Also, 
if u = 0 at an interior maximum (minimum), then it follows from the proof of the 
theorem that u == 0, irrespective of the sign of c. 

It is of course possible to prove the strong maximum principle directly without 
going through Theorem 3.1 and Lemma 3.4; (see [MR 2] for example). 

Uniqueness theorems for other types of boundary value problems are conse
quences of Lemma 3.4 and Theorem 3.5. In particular, we have the following 
uniqueness theorem for the classical Neumann problem. 

Theorem 3.6. Letu E e 2(Q) n eO(Q) be a solution olLu=O in the bounded domain 
D, where L is uniformly elliptic, c ~O, ciA. is bounded and D satisfies an interior 
sphere condition at each point 01 cD. If the normal derivative is defined everywhere 
on cD and culcv=O on aD, then u is constant in D. If, also, c<O at some point in 
D, then U==O. 

Proof Ifu# const., we may assume that either of the functions u or -u achieves 
a non-negative maximum M at a point X o on aD and is less than M in D (by the 
strong maximum principle). Applying Lemma 3.4 at Xo we infer that cu/av(xo) #0, 
contradicting the hypothesis. 0 

The result of Theorem 3.6 may also be generalized to mixed boundary value 
and oblique derivative problems; (see Problem 3.1). When aD has comers or edges 
where the derivatives of u are not defined, these results are false in the stated 
generality, even if u is assumed continuous on Q; (see Problem 3.8(a». 
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3.3. Apriori Bounds 

The maximum principle also provides a simple pointwise estimate for solutions of 
the inhomogeneous equation Lu= lin bounded domains. We remark that only 
the ellipticity and bounds on the coefficients are involved. This proves to be an 
important consideration in nonlinear problems. 

Theorem 3.7. Let Lu ~ I ( = j) in a bounded domain Q, where L is elliptic, c ~ 0, 
and u E cl(D) fl C2(Q). Then 

(3.12) sup u(iu!)~ sup u+(lu!)+C sup 1/,-1 (I~I), 
a m a A A 

where C is a constant depending on(v on diam Q and P= sup Ibl/X In particular, if 
Q lies between two parallel planes a distance d apart, then (3.12) is satisfied with 
C= e({J+l)d_1. 

Proof Let Q lie in the slab 0<x 1 <d, and set Lo=aiiDij+biDi. For lX~P+ 1 we 
have 

Let 

Then, since Lv=Lov+cv~ -A sup (If-I/A), 
oa 

and v-u~O on cQ. Hence, for C= evl_1 and lX~fJ+ 1, we obtain the desired 
result for the case Lu ~ f, 

If-I 
sup u~ sup v ~ sup u+ +C sup -A-· 

a a ffi a 

Replacing u by -u, we obtain (3.12) for the case Lu= f. 0 

Theorem 3.7 will be strengthened in Chapters 8 and 9 to provide analogous 
estimates for sup u in terms of integral norms of f. 

When the condition c~O is not satisfied, it is still possible to assert an apriori 
bound analogous to (3.12) provided the domain Q lies between sufficiently close 
parallel planes. 
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Corollary 3.8. Let Lu = f in a bounded domain D, where L is elliptic and u E 

CO(Q) r. C2(D). Let C be the constant of Theorem 3.7 and suppose that 

(3.13) 

Then 

(3.14) I ( If I) sup lui ~ c sup lui + C sup -, . 
o I 00 0 II. 

Remark. Since C= el/l+ od_1 is a possible value of the constant in (3.12), where 
d is the width of any slab containing D, condition (3.13) will be satisfied in any 
sufficiently narrow domain in which the quantities Ibl/A. and ciA. are bounded 
above. If c+ =0 (i.e., c~O), then C 1 = I and (3.14) reduces to (3.12). 

Proof of Corollary 3.8. Let us rewrite Lu = (Lo + c)u = fin the form 

(Lo+c-)u= f'= f +(c- -c)u= f -c+u. 

From (3.12) we obtain 

1f'1 
sup lui ~ sup lui + C sup T 

U 00 U 

( If I 
~ sup lui + C sup T + sup lui sup 

00 0 0 0 

This inequality and (3.13) imply (3.14). 0 

An immediate consequence of Corollary 3.8 is uniqueness for solutions of the 
Dirichlet problem in sufficiently small domains (assuming of course fixed upper 
bounds on the quantities IbllA. and c/A.). 

3.4. Gradient Estimates for Poisson's Equation 

The maximum principle can also be used to derive estimates on derivatives of 
solutions provided additional conditions are placed on the eqlOation. To illustrate 
the method we obtain such estimates for Poisson's equation. The results derived 
here will not be required for later developments. 

Let Au = f in the cube Q = {x = (x I' ... , xn) E IR" Ilxil < d, i = l, ... , n}, with 
u E C2(Q) r. CO(Q) and f bounded in Q. By means of a comparison argument 
we shall derive the estimate 

n d 
I Dju(O)1 ~d sup lui +2 sup If I, i= I, ... , n. 

"Q Q 

(3.15) 
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In the half-cube 

Q' = {(x 1 ' ... , x,,) I Ix il < d, i = I, ... , n - I, 0 < x" < d}, 

consider the function 

q>(x', x,,)=t[u(x', x,,)-u(x',-x,,)], 

where we write x'=(xl' ... , X,,-l) and x=(x', x,,). One sees that q>(x', 0)=0, 
suplq>I~M=suplul, and IAq>I~N=supIII in Q'. Consider also the function 
~ ~ Q 

I/I(x', X,,)=; [lx'1 2 +x,,(nd-(n-l)x,,)]+N ~"(d-x,,). 

Obviously I/I(x', x"r~O on x,,=O and I/I~M on the remaining portion of oQ'; 
also A 1/1 = -N. Hence A(I/I±q»~O in Q' and I/I±q>~0 on oQ', from which it 
follows by the maximum principle that Iq>(x', x,,)I~I/I(x', x,,) in Q'. Letting x'=O 
in the expressions for q> and 1/1, then dividing by.x" and letting x" tend to zero, we 
obtain 

which is the asserted estimate (3.15) for i = n. The result follows in the corresponding 
way for i = I, ... , n - I. If I = 0, (3.15) provides an independent proof of (essen
tially) the gradient bound (2.31) for harmonic functions. 

From (3.15) we infer that in any domain n a bounded solution u of Au= I 
satisfies an estimate 

(3.\6) sup dxIDu(x)1 ~ C (sup lui + sup d;l/(x)/), 
a a a 

where dx=dist (x, am and C= C(n). For if x En and Q is a cube of side d=dx/J~ 
with its center at x, we have from (3.15) the inequality 

dxIDu(x)1 ~ C(sup lui +d 2 sup liD 
aQ Q 

~ C(sup lui + sup if,1/(y)I). 
a a 

(Here we have used the same letter C to denote constants depending only on n.) 
In the same generality as above, we now derive by a similar comparison argu

ment an estimate of the modulus of continuity of the gradient of solutions of 
Poisson's equation. 
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Again let u E C2(Q) n CO(Q) be a solution of Au= I in the cube Q, and set 
M = sup lui, N = sup I II. Let Q' be the domain in IRn + I given by 

Q Q 

Q'={(XI"'" X n _1' y, z)llx i l<d/2, i= I. ... , n- I. O<y, z<d/4}, 

and let us define in Q' the function 

q>(x',y, z)=![u(x',y+z)-u(x', y-z)-u(x', - y+z)+u(x', - y-z)]. 

Introducing the elliptic operator 

in the n+ 1 variables xi" . " xn _ I ' y, Z, we see that ILq>1 ~N in Q'. Also, on Q' we 
have: (i) q>(x', 0, z)=q>(x', y, 0)=0; (ii) 1q>I~M on IXil=d/2, i= J. ... , n-I; 
(iii) Iq>(x', d/4, z)1 ~J.LZ and Iq>(x', y, d/4)1 ~ J.LY, where IDul ~ J.L in Q', J.L being given 
in terms of M and N by (3.16). We now choose a comparison function in Q' of the 
form, 

(3.17) 
, 4Mlx'12 4J.L 2d 

t/I(x, y, z)= d2 +-d yz+kyz log-, 
y+z 

where k is a positive constant yet to be determined. We observe first that 1q>1 ~ t/I 
on aQ'. Since 

Lt/I= 8(n; I) M+k(-I + yz 2)~8(n~I)M 3 k 
(y+z) 4 ' 

we see that Lt/I ~ - N provided 

With such a choice of k, the function 

, 4Mlx'1 2 (4J.L 2d ) 
t/I(x,y,z)= d2 +yz d+klogy+z 

satisfies the conditions, L(t/I ± q» ~O in Q', t/I ± q> ~O on aQ'. Accordingly, 1q>1 ~ t/I 
in Q'. Letting x' = 0 in this inequality, then dividing by z and letting z tend to zero, 
we obtain 

(3.18) 
. 1q>(0, y, z)1 4J.L 2d 

tlu)l(O,y)-u)l(O, -y)l=hm ~dy+kylog-;. 
%-0 z .} 
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With a slight modification of the argument an analogous estimate can be 
derived for IDju(O, xn)-Dju(O, -xn)1 (where Dj=%xp i= I, ... , n-l). Let us 
define 

<p(~, y, z)=Hu(~, y, z)-u(x, - y, z)-u(~, y, -z)+u(~, -y, -z» 

where ~=(Xl' ... , xn- 2). In the domain 

Q' = {(Xl' ... , xn- 2 ' y, z) Ilxjl <d/2, i= I, ... , n-2, O<y, z<d/2} 

we choose a comparison function similar to (3.17) of the form 

4MI~12 (4J.L 2d ) 
"'(~,y, z)=--;p-+Yz d+1< log y+z ' 

where J.L and I< are constants such that IDul ~ J.L in Q' and 

I< ~ tEN + S(n - 2)M /tf]. 

One verifies that A("'±<p)~O in Q' and "'±<p~0 on oQ', from which it follows 
l<pl~'" in Q'. As above, if we set ~=O in this inequality, then divide by y and let 
y tend to zero, we obtain 

(3.19) 

Obviously the same result is obtained if D n _ 1 is replaced by Dj7 i = I, ... , n - 2. 
We note that unlike the argument for (3.IS), the proof of (3.19) did not require the 
introduction of an operator in IRn+ 1. 

If now Au= I in a domain D of IRn, we can obtain from (3.1S) and (3.19) 
an estimate for IDu(x) - Du(y)l, where X and yare any two points of D. Let 
dx=dist (x, oD), dy=dist (Y. oD) and dx.y=min (dx' dy)' Assume dx~dy' so that 

dx=dx,y' Suppose first that Ix- yl ~ d=dx/2Jn, and consider the segment joining 
x and y. We choose the center of this segment as origin and rotate coordinates so 
that x and y lie on the Xn axis with x = (0. xn). y = (0, - xn) in the new coordinates. 
The cube Q= {(xl" .. , xn) Ilxjl <d. i= I, ... , n} lies in Dat a distance greater than 
dx/2 from oD. We may apply (3.16), (3.1S) and (3.19) directly in Q to obtain 

d2IDU(~)-~U(Y)1 ~ C (sup lui +d2 sup III> log I 2d I' 
x-y Q Q x-y 

for some constant C= C(n). Hence 

IDu(x)-Du(y)1 d 
d;,y I I ~C (sup lui + sup d;l/(x)i) log ~I x, I' 

x-y a a x-y 
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If X and yare now points in D such that Ix - yl > d, we have from (3.16), 

1 IDu(x)-Du(y)1 2 
dx. y I I ~ C (sup lui + sup dx If(x)l). 

x-y a a 

Combining these results, we obtain 

where C is a constant depending only on n. 
The preceding results are collected in the following. 

Theorem 3.9. Let u E C2(D) satisfy Poisson's equation, L1u= f, in D. Then 

sup dxIDu(x)1 ~ C (sup lui +sup d;lf(x)l), 
a a a 

and for all x, yin D, x# y, 

where C= C(n). Here dx=dist (x, aD), dx. y=min (dx' dy)' 

Despite the elementary character of its proof, this theorem is essentially sharp 
and the estimate (3.20) cannot be improved without further continuity assumptions 
on f. Theorem 3.9 will also hold for weak solutions in the sense of Chapter 8 
provided f is bounded; (see Problem 8.4). 

Extensions of the above results for the case of Holder continuous fare treated 
by other methods in Chapter 4, although the comparison methods of this section 
can be used to obtain these extensions as well; (see [BR I, 2]). 

3.5. A Harnack Inequality 

The maximum principle provides an elementary proof of a general Harnack 
inequality for uniformly elliptic equations in two independent variables. Letting 
D p = D p(O) denote the open disk of radius p centered at the origin, we state the 
result in the following form. 

Theorem 3.10. Let u be a non-negative C2 solution of 

Lu = aUn + 2buxy + CUyy = 0 
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in the disk DR' and suppose that L is uniformly elliptic in DR . Then at all points 
z=(x, Y) E DR/4 we have the inequality 

(3.21 ) 

where K is a constant depending only on the ellipticity modulus Jl=sup A/A. 
D 

Proof We note to begin with that since the equation Lu=O and the modulus Ji. 
are invariant under similarity transformation, it suffices to prove the theorem in the 
unit disk D= D1 • Since u~O in D, the strong maximum principle (Theorem 3.5) 
implies that either u == 0 or u > 0 in D, so it suffices to assume the latter. Consider 
the set G in D where u> u(0)/2, and let G' c G be the component containing o. 
One sees from the maximum principle that oG' II cD is non-empty, and hence 
there is no loss of generality in assuming that the point Q = (0, I) is in cG'. We 
define the functions v + and v _ by 

v±(x, y)= ±x+~-k(y-t)2, 

where k is a positive constant. The parabolas, r ± : v ± = 0, have vertices ( +~, t) 
in D and common axis y=t. If k is sufficiently large (it suffices that k~3), the 
domains P ± in D in which v ± > 0 have an intersection P + II P _ bounded by arcs of 
r + ' r _ and lying entirely in the upper half of D; (see Figure I ) . In P + ' the functions 
v± obviously satisfy the inequality O<v± <to -

Figure I 

Setting E± =exp «(Xv±), where (X is a positive constant yet to be chosen. we find 
by direct calculation 

LE ± = E ± {(l2[a + 4bk( Y - tl + 4ck 2( Y - 1)2] - 2iXkc] 

~ E ± «(X2 A - 2(XkA) 

~OinD, iflX~2kJi. . 
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Consequently, with such a choice of IX, the functions 

(3.22) 

have the properties: 

w± =0 on r ±; o < w ± < I in P ± . 

Now let z be any point in P + n P _ . Then either: (i) U ~ u(0)/2 and Z E G; or 
(ii) z lies in a component U + of P + - G such that au + C r + u iJG; or (iii) z lies in 
a component U _ of P _ - G such that au _ c r _ u cG; (see Figure I). These are the 
only alternatives, since either P + n P _ c G' or aG' separates P + U P _ . (The two 
dimensionality is used here in an essential way.) In cases (ii) and (iii) we have 

u-tu(O)w± =!u(O)(I-w±»O on aG n au ±' 

on r ± n au ±. 

Thus u -tu(O)w ± >0 on au ± . Since L(u - tu(O)w ±) ~O, we infer that 

In particular, on the segment, y=t, Ixl ~t, we have 

(3.23) "Ix E [-t, n 
where 

KI=t(e~/4-1)/(e7~/4-1)=t inf [w+(x,t),w_(x,t)]. 
Ixl'; 1/2 

We now define another comparison function, similar to (3.22). Namely, setting 
v = y + I - 6x 2 , we consider the domain 

P = { (x, y) E D I v( x, y) > 0, y < t }. 

Pis bounded by the segment, y=t, Ixl ~t, and the arc r of the parabola v=O, with 
vertex at (0, -I) and passing through the points (±t, t). As before, for a suitable 
choice of f3 > 0 depending only on J.I., the function 

w=(ePV_l)/(e3fJ/2_1) 

has the properties: 

Lw~O in D; w=O on r; O<w<linP. 

From (3.23) we have that u- Klu(O)w>O on OP, and since L(u- Klu(O)w)~O, it 
follows from the maximum principle that 

u(z) > K I u(O)w(z) Vz E P. 
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Noting that D 1/ 3 c P, and setting K2 = inf w, we obtain 
DliJ 

(3.24) 

Clearly K depends only on Jl.. 

If now Z E Dl/4 the disk D3/4 (z) is contained in D and the inequality (3.24), 
applied in the disk Dl/4 (z), implies 

u(O) > Ku(z) VZEDI/4' 

Combining this inequality with (3.24), we obtain 

It follows immediately from (3.21) that 

(3.25) sup U~K inf u, 
DR/" DR/" 

where K= I/K2. By the same chaining argument as in Theorem 2.5, we obtain the 
following Harnack inequality for arbitrary domains in R2. 

Corollary 3.11. Let the hypotheses of Theorem 3.10 hold in a domain fl c R2. Then 
for any bounded subdomain fl' c c fl, there is a constant K depending only on fl, fl' 
and Jl. such that 

(3.26) sup U~K infu. 
(l' (l' 

If we consider the more general elliptic equation 

(3.27) 

where the coefficients of the operator L are bounded and A. ~ A.o > 0, the proof of 
Theorem 3.10 in the unit disk D is still valid (with slight modification); and the 
conclusion remains the same, but the constant K now depends on the bounds for 
the coefficients in D as well as on Jl.. In stating the analogous result for a disk of 
radius R, the constant K will therefore depend on R in addition to the other quanti
ties; (see Problem 3.4). 

The Harnack inequality (3.21) has as consequence the following Liouville 
theorem. 

Corollary 3.12. If the equation Lu =auxx + 2bux, + cUyy=O is uniformly elliptic in 
R2 and u is a solution bounded below (or above) and defined over the entire plane, then 
u is constant. 
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Proof. We may assume that infu = O,and,hence,foranye > O,u(zo) < dorsome 
Zoo In every disc D2R(ZO), we have from (3.21) that u(z) < Ke for all Z E DR(ZO). Since 
K is a constant independent of R, it follows that u(z) < Ke for all Z E [R2, and the 
conclusion is immediate by letting e --. o. 0 

A proof of the extension of the Harnack inequality (Theorem 3.10) and of 
Corollary 3.12 to higher dimensions appears in Chapter 9. Other Harnack in
equalities, for equations in divergence form, together with some important 
applications, are contained in Chapters 8 and 13. 

3.6. Operators in Divergence Form 

We conclude this chapter with a brief look at the situation for operators in 
divergence form. In many situations it is more natural to consider these than 
operators of the form (3.1). The simplest such case is 

(3.28) 

Later it will be necessary to consider more general operators whose principal part 
is in divergence form. L will be called elliptic in Q if the coefficient matrix [aij(x)] 
is positive for all x E Q. 

Evidently the results concerning the maximum principle apply equally well to 
the operator (3.28) when the coefficients d j are sufficiently smooth. However, when 
this is not the case, or, as in nonlinear problems, when it is often inappropriate to 
make quantitative assumptions concerning the smoothness of the coefficients (e.g., 
bounds on their derivatives), the essentially algebraic methods of the earlier part of 
this chapter cease to be applicable and must be replaced by integral methods, which 
are more natural for the divergence structure of L. 

The relations Lu=O C~O, ~O) satisfied by solutions (subsolutions, super
solutions) of Lu = 0 can be defined for broader classes of coefficients and functions 
u than those formally permitted in (3.28). Thus, if the coefficients aij are bounded 
and measurable and u E C1(Q), then, in a generalized sense, u is said to satisfy 
Lu=O (~O, ~O) respectively in Q, according as 

(3.29) f aij(x)DiUDlP dx=O (~O, ~O) 
n 

for all non-negative functions cP E Cb(Q). By application of the divergence theorem 
this is easily seen to be equivalent to Lu=O (~O, ~O) when aij E C1(Q) and 
u E C2(Q). In later chapters generalized solutions will be defined in wider and more 
appropriate function spaces. 
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The weak maximum principle is an immediate consequence of(3.29). For let u 
satisfy 

(3.30) f aiiDjuDjcp dx~O for all cP E CMQ), cp?O; 
o 

and suppose, contrary to our assertion, that sup u > sup u = uo' Then for some 
o im 

constant c>O, there is a subdomain Q'c cQ in which v=u-uo-c>O and 
v = 0 on iJQ'. The relation (3.30) remains true with u replaced by v and with cp = v 
in Q', =0 elsewhere. (As thus defined cp rt C~(Q), but (3.30) can be seen to hold 
by approximating this cp with functions in Cb(Q).) It follows that 

0' 

and hence since [aij] is positive, we infer that Dc = 0 in Q'. Since l' = 0 on oQ', 
we have l' = 0 in Q '. which contradicts the definition of l'. This establishes the weak 
maximum principle. 

Stronger and more general maximum principles for divergence structure 
operators will be presented in later chapters. Aside from the already noted 
difference in methods in treating the two classes of operators. it should be remarked 
also that results relating to the maximum principle are often different for the 
operators (3.1) and (3.28) when there are weak smoothness conditions on the 
coefficients. For example, Lemma 3.4 is not necessarily true for the uniformly 
elliptic operator of divergence form (3.28) even when the coefficients are arbitrarily 
smooth in the interior and continuous up to the boundary; (see Problem 3.9). 

Notes 

The boundary point lemma (Lemma 3.4) as proved here is due to Hopf [H 05] ; an 
independent proof. differing only in the choice of comparison function. was 
obtained by Oleinik [OL]. The result remains valid, under the same hypotheses on 
the coefficients, if oQ has a Dini continuous normal [KH]. A further extension, 
valid for a class of domains including Lipschitz domains, provides a proof of 
uniqueness for the Neumann problem in such domains [NO]. Lemma 3.4 is false in 
general for strictly and uniformly elliptic equations of divergence form even if the 
coefficients are continuous at the boundary point (see Problem 3.9), but is true if 
the coefficients are Holder continuous in a neighborhood (Finn-Gilbarg [FG 1]). 

Results analogous to Lemma 3.4 for domains satisfying an interior cone 
condition. in place of the interior sphere condition, have been obtained by Oddson 
[OD] and Miller [ML I. 3]. They prove (3.11) and more precise results. with 
Ix - xoll' in place of Ix - xol, the exponent J.l. depending only on the cone angle and 
the ellipticity constant; (here the vector x - Xo lies within a fixed subcone of the 
assumed interior cone at xo)' These essentially sharp results are based on the 
extremal elliptic operators of Pucci [PU 2]. 
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The maximum principle in the generality of Theorem 3.5 was first proved by 
Hopf [HO I]. For earlier results. under more restrictive hypotheses. see references 
in [PWJ, p. 156, where there is also a discussion of various extensions of the 
maximum principle. Some of these are considered in Chapters 8 and 9. 

Section 3.4 is based on the ideas of Brandt [BR 1,2], who has shown that much 
of the linear theory of classical solutions of second order elliptic and parabolic 
equations, including the deeper estimates of Chapters 4 and 6, can be derived from 
comparison arguments using the maximum principle. As in Section 3.4, the method 
requires appropriate (and generally not obvious) choices of comparison functions, 
which are used to estimate difference quotients and hence derivatives. 

The Harnack inequality (Theorem 3.10) and some extensions are due to Serrin 
[SE 1]. This seems to be the first proof of a Harnack inequality by the maximum 
principle. Bers and Nirenberg [BN] derive a very similar result by altogether 
different and deeper methods. 

The Liouville theorem (Corollary 3.12) is related to Bernstein's geometric 
theorem on surfaces of non-positive curvature (see [HO 4]) which implies that an 
entire solution u of any elliptic equation auxx + 2buXY + CUyy =0 such that u=o(r) as 
r --> 00 must be constant. Of particular interest is the fact that the equation need 
only be pointwise elliptic. In this generality Corollary 3.12 ceases to be valid, as 
counterexamples show. Bernstein's result is also based on the maximum principle 
but the argument is quite different and is more geometric. 

Problems 

3.1. Let L satisfy the conditions of Theorem 3.6 in a bounded domain Q and 
suppose Lu=O in Q. 

(a) Let oQ= Sl u S2 (Sl non-empty) and assume an interior sphere condition 
at each point of S2' Suppose u E C2(Q) n C1(Q u S2) n CO(Q) satisfies the mixed 
boundary condition 

where the vector /J(X)=(f31(X)"", Pn(x)) has a non-zero normal component (to 
the interior sphere) at each point x E S2' Then u=O. 

(b) Let oQ satisfy an interior sphere condition, and assume that u E 

C 2(Q) n C I(Q) satisfies the regular oblique derivative boundary condition 

where a(/J·v»O, v=outward normal. Then u=O. 

3.2. (a) If L is elliptic, Lu;:: 0 (~O) and C < 0 in a domain Q, then u cannot 
achieve an interior positive maximum (negative minimum). (No assumption is 
made concerning the coefficients bi .) 
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(b) If L is elliptic with e<O in a bounded domain a, and u E C2(Q) n CO(m 
satisfies Lu= f in a, then 

sup lul::;o;sup lui +sup Iflci-
a aa a 

3.3. Let Lu=auxx+2buxy+cuyy=0 in an exterior domain r>ro' L being uni
formly elliptic. Prove that if u is bounded on one side then u has a limit (possibly 
infinite) as r --> 00 ; (cf. [GS]). [Apply the Harnack inequality in suitable annuli 
extending to infinity.] Use this result to prove the Liouville theorem, Corollary 
3.12. 

3.4. Let u be a non-negative solution of 

where the coefficients of L satisfy the inequalities 

AI)"::;O;jl, WI)"I, !c1)"I::;o;v (jl, v=const.). 

Prove the Harnack inequality (3.21) with K=K(jl, v) and Corollary 3.11 with 
K=K(jl, v, a, a/). 

3.5. Assume the conditions on L in Problem 3.4 are satisfied in the punctured 
disk Do:O<r<ro. and let Lu=O in Do. Prove that if u is bounded on one side, 
then u has a limit (possibly infinite) as r --> 0; (cf. [GS]). 

3.6. Let u E C2(Q) n cl(.O) be a solution of 

Lu:=aijD.u+biD.u+eu=!, c::;o;O IJ I 

in a bounded C 1 domain a of /R" satisfying an exterior sphere condition at Xo E aa, 
with BR(y) n n = xo, and let )." A be positive constants such that 

dj(X)eiej~).,leI2 'r/x E a, e E /R" 

laiil, WI, lei ~A. 

If cP E C2(m and u = cp on aa, show that u satisfies a Lipschitz condition at xo' 

lu(x) - u(xo)1 ~ Klx - xol, x E a, 

where K = K()." A, R, diam a, sup I! I, I cp 12; a). Hence conclude that K provides a 
a 

gradient bound for u on aa when u E C1(m and aa is sufficiently smooth; (cf. [CH], 
p. 343). If the sign of e is unrestricted, show that the same result holds provided K 
depends also on sup I u I. 

a 
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3.7. (a) Let the operator L in the preceding problem have Holder continuous 
coefficients aij at the origin: Idj(x)-aij(O)I:S;;Klxl", (%>0, in Ixl<ro for some 
constant K. Suppose Lu~O (c=:O) in the punctured ball O<r:S;;ro, and assume 

_ {o(iOg r), n = 2 -+ 
u- (2-n) 2 as r O. or, n> 

Show that 

(3.31) lim sup u(x):S;; sup u(x) 
x-a Ixl=.o 

and that equality holds only if u is constant. 
(b) If n > 2 show that the same conclusion holds as in part (a) if the coefficients 

aij are continuous at x=o and u=0(r2- nH) as r -+ 0 for some b>O; (cf. [GS]). 

3.8. Consider the equation 

(3.32) ij_ ~ij xixj . '-1 a -0 +g(r) 2' I,J-, ... , n. 
r 

Show that Lnu=O has a radially symmetric solution u=u(r), r#O, satisfying the 
ordinary differential equation 

u" I-n 
-=---. 
u' r(l +g) 

(a) If n=2 and g(r)= -2/(2+log r), show that equation (3.32) is uniformly 
elliptic in the disk D: O:s;; r:S;; r 0 = e - 3, with continuous coefficients at the origin, 
and has bounded solutions a + b/log r in the punctured disk D - {O} that do not 
satisfy (3.31). 

(b) If n>2 and g(r)=-[I+(n-I)logrr 1 , show that (3.32) is uniformly 
elliptic in O:s;; r:S;; r 0 = e - 1 and has continuous coefficients at the origin. Show that 
the corresponding solution u = u(r) satisfies the condition u =0(r2 -n) as r -+ 0 but 
does not satisfy (3.31). 

(c) If n > 2, determine a function g(r) such that (3.32) is uniformly elliptic and 
has a bounded solution u=u(r) continuous at r=O that does not satisfy (3.31). 

3.9. Let W=Z exp [ -(log (l/lzIW/2]. By considering the relation w!=v(z)wz ' 

where 
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show that U= Re 1-1'= X exp [-(log (I/r))1/2] satisfies a uniformly elliptic equation 
of divergence form 

in which the coefficients a -+ 1, b -+ 0, C -+ 1 at the origin and are regular in 
O<r< I. Observe that u(O, 0)=0, u(x, y»O for x>O and ux(O, 0)=0. Compare 
with Lemma 3.4. 

3.10. Let L be the operator of Problem 3.6, but without any condition on the sign 
of the coefficient c. Assume there is a function v such that v > 0 and Lv ::::; 0 in Q. 
Then, if Lu ~ 0, show that the function w = u/v cannot achieve a non-negative 
maximum in the interior of Q unless it is constant. 



Chapter 4 

Poisson's Equation and the Newtonian Potential 

In Chapter 2 we introduced the fundamental solution r of Laplace's equation given 
by 

12 
I Ix - yl2 - n, n > 2 

n( -n)wn 

(4.1) r(x-y)=r(lx-yi)= I 
? log Ix-yl, n=2. 
_1[ 

For an integrable function j on a domain D, the Newtonian potential oj j is the 
function w defined on Rn by 

(4.2) w(x)= fr(x-y)j(y)dy. 
u 

From Green's representation formula (2.16), we see that when oD is sufficiently 
smooth a C2(Q) function may be expressed as the sum of a harmonic function 
and the Newtonian potential of its Laplacian. It is not surprising therefore that 
the study of Poisson's equation Au = j can largely be effected through the study 
of the Newtonian potential of J. This chapter is primarily devoted to the estima
tion of derivatives of the Newtonian potential. As well as leading to existence 
theorems for the classical Dirichlet problem for Poisson's equation, these estimates 
form the basis for the Schauder or potential theoretic approach to linear elliptic 
equations treated in Chapter 6. 

4.1. Holder Continuity 

If the functionfin (4.2) belongs to C~(Q), we see by writing 

w(x) = f r(x - y)j(y) ely = f r(x - y)j(y) dy 
U It'l 

= f r(z)f(x-z) dz 
JR" 
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that the function w will belong to COO(Q). If. on the other handJis merely assumed 
continuous, the Newtonian potential w is not necessarily twice differentiable, It 
turns out that a convenient class of functions/to work with is the class of Holder 
continuous functions which we introduce now. 

Let Xo be a point in /R" and/ a function defined on a bounded set D containing 
xo' If 0< ex < I, we say that f is HOlder continuous with exponent ex at .'<0 if the 
quantity 

(4.3) 

is finite. We call [/Ja;x() the (X-Holder coefficient offat Xo with respect to D. Clearly 
if/is Holder continuous at .'<0' then/is contInUOUS at xo' When (4.3) is finite for 
il= 1 ,fis said to be Lipschitz continuous at .'<0' 

Example. The function f on 8(0) given by f(.'<)=lxl~, O<{k L is Holder 
continuous with exponent {3 at x = 0, and is Lipschitz continuous when p = 1. 

The notion of Holder continuity is readily extended to the whole of D (not 
necessarily bounded). We call / uniformly Holder continuous with exponent ex in D 
if the quantity 

(4.4) 
I/(x) - /( y)1 [/J = sup , O<:X~ I, 

>;D Ix-yja 
x,yeD 
x*y 

is finite; and locally Holder continuous with exponent il in D if / is uniformly Holder 
continuous with exponent ex on compact subsets of D. These two concepts obviously 
coincide when D is compact. Furthermore note that local Holder continuity is a 
stronger property than pointwise Holder continuity in compact subsets. A locally 
Holder continuous function will be pointwise Holder continuous in D provided it is 
also bounded in D. 

Holder continuity proves to be a quantitative measure of continuity that is 
especially well suited to the study of partial differential equations. In a certain 
sense, it may also be viewed as a fractional differentiability. This suggests a natural 
widening of the well known spaces of differentiable functions. Let Q be aft open 
set in IR" and k a non-negative integer. The Holder .Ipaces C'.a(Q) (C""(Q)) are 
defined as the subspaces of Ck(Q) (Ck( Q)) consisting of functions whose k-th order 
partial derivatives are uniformly Holder continuous (locally Holder continuous) 
with exponent ex in Q. For simplicity we write 

with the understanding that 0 < (X < 1 whenever this notation IS used, unless 
otherwise stated. 

Also, by setting 
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we may include the C(.Q) (C(O» spaces among the C·IZ(.Q) (C·IZ(Q» spaces for ° ~ rJ. ~ I. We also designate by ~.IZ(.Q) the space of functions on C, IZ( Q) having 
compact support in Q. 

Let us set 

[U]U;O=IDkUlo;o=sup sup IDPul, k=O, I, 2, ... 
IPI =k a 

(4.5) 

With these seminorms, we can define the related norms 

k k 

Ilullck(Q)=lulk;O=lulu;o= L [u]j.o;o= L IDiulo;o' 
j=O j=O 

(4.6) 

on the spaces Cm), C·IZ(O), respectively. It is sometimes useful, especially in 
this chapter, to introduce non-dimensional norms on Cal), C·IZ(Q). If Q is 
bounded, with d=diam Q, we set 

k k 

lIull~'(Q)=lul~;o= L dj[u]j.o;o= L djIDiulo;o; 
j=O j=O 

(4.6)' 

The spaces C(Q), C·IZ(O), equipped with their respective norms, are Banach 
spaces; (see Chapter 5). 

We note here that the product of Holder continuous functions is again Holder 
continuous. In fact if u E ("'(0), V E CP(O), we have ut' E C(O) where y = min (IX, m, 
and 

(4.7) 

For the domains Q of interest in this work the inclusion relation C'·IZ'(Q)C 
C· ~(Q) will hold whenever k + IX < k' + IX'. It should be noted, however, that such a 
relation will not be true in general. For example, consider the cusped domain 

and for some (J. I </k 2. let u(x, y) = (sgn x)yP if y>O, =0 if y~O. Clearly 
u E C1(0). However. if I> IX> {J/2, it is easily seen that u f (",(0), and hence 
C I (met CIZ(Q). 
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4.2. The Dirichlet Problem for Poisson's Equation 

We show that ifJis bounded and Holder continuous in the bounded domain D, the 
classical Dirichlet problem for Poisson's equation may be solved under the same 
boundary conditions for which Laplace's equation is solvable (Theorem 2.14). 
First we require some differentiability results for the Newtonian potential in 
bounded domains. 

In the following the D operator is always taken with respect to the x variable. 

Lemma 4.1. Let J be bounded and integrable in D, and let W be the Newtonian 
potential of'}: Then WE C1(1ff') andJor any XED, 

(4.8) Djw(x)= f Djr(x-y)J(y) dy, ;= 1, ... , n. 
a 

Proof By virtue of the estimate (2.14) for Dr, the function 

v(X)= f Djr(x-y)J(y) dy 
a 

is well defined. To show that v=Djw, we fix a function" in C1(R) satisfying 
O:E;;,,:E;; I, O:E;;,,' :E;;2, ,,(t)=O for t:E;; I, ,,(t) = 1 for t~2 and define for £>0, 

W.(x) = f r".f(y) dy, r = rex - y), Pl. = ,,(lx - Ylle). 

a 

Clearly, w. E C1(R") and 

vex) - Djw.(x) = f Dj{(l - ".)r}f(y) dy 

Ix-)'IOI02. 

so that 

lV(x) - Djw.(x) I :E;; sup If I f (IDjF! + ~ IF!) dy 

Ix-yIOlO2. 

{ 
2ne 

:E;; sup If I n - 2 

4e(1 + I log 2e I) 

for n > 2 

for n = 2. 

Consequently, W. and Dj w. converge uniformly in compact subsets of Iff' to W and v 
respectively as e -+ O. Hence, WE C1(R") and Djw = v. 0 



4.2. The Dirichlet Problem for Poisson's Equation ss 

Lemma 4.2. Letfbe bounded and locally Holder continuous (with exponent (X~ 1) 
in 0, and let w be the Newtonian potential off. Then w E C2(U), Llw= fin 0, andfor 
any XE 0, 

(4.9) Djjw(x)= f Dijr(x-y)(f(y)-f(x» dy 
00 

-f(X)f Djr(x-y)viy)dsy , i,j=I, ... ,n; 
iJOo 

here 00 is any domain containing 0 for which the divergence theorem holds and f is 
extended to vanish outside D. 

Proof. By virtue of the estimate (2.14) for D2 r and the pointwise Holder con
tinuity off in 0 the function 

00 /lao 

is well-defined. Let v = Dj w, and define for e > 0 

v.(x) = f Djr".!(y) dy, 

a 

where". is the function introduced in the preceding lemma. Clearly, v. E C1(U), and 
differentiating, we obtain 

Djv.(x) = f DJ{Djr".)f(y) dy 

a 

= f DJ{Djr".)(f(y) - f(x» dy 

a 

+ f(x) f DiDjr".) dy 

00 

= f DJ{Djr".)(f(y) - f(x» dy 

0 0 

- f(x) f Djrviy) dsy 

/lao 
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provided 6 is sufficiently smalL Hence, by subtraction 

f Dj{(l - I1.)D i r}(f(y) - f(x» dy 

Ix-yl"'2. 

~ [fJa;x f (IDijTl + ~ IDiTl)IX - ylady 

Ix-yl "'2. 

provided 26 < dist (x, aD). Consequently D i v. converges to u uniformly on compact 
subsets of a as e --. 0, and since v. converges uniformly to v = Djw in a, we obtain 
WE C2(a) and u= Dijw. Finally, setting 0 0 = BR(x) in (4.9), we have for sufficiently 
large R, 

This completes the proof of Lemma 4.2. 0 

From Lemmas 4.1,4.2 and Theorem 2.14 we can now conclude: 

Theorem 4.3. Let a be a bounded domain and suppose that each point 0/ 00 is 
regular (with respect to the Laplacian). Then if/is a bounded, locally Holder con
tinuous/unction in a, the classical Dirichlet problem: LJu=fin a, u=cp on 00, is 
uniquely solvable/or any continuous boundary values cpo 

Proof We define w to be the Newtonian potential of/and set v=u-w. Then 
the problem"LJu=/in a, u=cp on 00 is equivalent to the problem LJv=O in a, 
v = cp - w on 00, and its unique solvability follows by Theorem 2.14. 0 

In the case where a is a ball, B= BR(O) say, Theorem 4.3 follows from the 
Poisson integral formula (Theorem 2.6) and Lemmas 4.1, 4.2. Moreover we have 
the explicit formula for the solution: 

(4.10) u(x)= f K(x, y)cp(y) dsy + f G(x, y)f(y) dy 

iJB B 

where K is the Poisson kernel (2.29) and G is the Green's function (2.23). 

4.3. Holder Estimates for the Second Derivatives 

The following lemma provides the basic estimate in the subsequent development of 
the theory. 
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Lemma 4.4. Let BI = BR(xO)' B2 = B2R(X O) be concentric balls in IR". Suppose 
f E C«(B2 ), 0 < ex < I, and let w be the Newtonian potential off in B2 • Then WE 

C 2'«(B\) and 

where C= C(n, ex). 

Proof For any x E Bp we have by formula (4.9), 

so that by (2.14) 

(4.12) 

~ C1(lf(x)1 + R"[f],,;.) 

where C 1 = C 1 (n. ex). 
Next, for any other point x E B\ we have again by formula (4.9), 

Djjw(x) = f Djjr(x-,y)(f(y)- f(i)) dy 

B2 

-f(i) f Djr(x-y)viY) ds,. 
aB2 

Writing b=lx-xl. e=l(x+x), we consequently obtain by subtraction 

Djjw(x)-Djjw(x) = f(x)/1 +(f(x)-f(x»/2 +/3 +/4 

+ (f(x)- f(x»/s +/6' 



58 4. Poisson's Equation and the Newtonian Potential 

where the integrals II ' 12 , 13 , 14 , Is and 16 are given by 

II = f (Djr(x - y) - Djr(x - Y»Vi y) ds y 

oB, 

12 = f Djr(X-y)Viy) dsy 

oB, 

13= f Dijr(x-y)(f(X)-!(y»dy 
B6W 

14 = f Dijr(x - y)(f( y) - !(X» dy 
B6W 

15= f Dijr(x-y)dy 
B,-B6W 

16= f (Dijr(x-y)-Djjr(x-y»(f(X)-!(y»dy. 
B,- B6(~) 

The estimation of these integrals can be achieved as follows: 

IIII~lx-xl f IDDjr(~-y)1 dsy for some point ~ between x and x, 
iJB, 

~n22n-~(%J. since b=lx-xl <2R. 

II21~_I_RI-n f dSy =2n - l • nWn oB, 

1131 ~ f I Dijr(x - y)llf(x) - f(y) I dy 

B6W 

1 
~- [f]~.x 

W ' 
n 

f Ix-YI~-n dy 

B36/'(X) 

n (3b)~ 
=~ 2 [f]~;x 

II41~~ C:X [f]~;%' as in the estimation of 13 , 
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Integration by parts gives 

1/51=1 f DjF(x-y)Viy) €by 1 

aCBz - B.C()) 

~ 1 f Djr(x - Y)VJ{ Y) €by 1 + I f DjF(x - Y)VJ{ y) €by I 

aBz aB.C~) 

for some ~ between x and x, 

f Iflx)-/(y)1 du c=n(n+5)!wn 
I~_ yln+ I f' 

Iy- ~Il!:~ 

since Ix-yl ~!I~ - yl ~ 31~-YI. 

~1~1X2n+IG)" bll[/]II;~' c'=n2(n+5). 

Collecting terms. we thus have 

where C2 is a constant depending only on n and IX. The required estimate then 
follows by combining (4.12) and (4.13). 0 

Remark. IfOI • 02 are domains such that °1 cBI • 02:;)B2• and/e C"(U2), and 
if w is the Newtonian potential of lover °2, then evidently Lemma 4.4 remains 
true with °1, 02 replacing B1, B2 , respectively, in (4.11); that is. 

Holder estimates for solutions of Poisson's equation follow immediately from 
Lemma 4.4. 
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Theorem 4.5. Let u E Cg(lR"), f E q(lR"), satisfy Poisson's equation ,1u = f in 
IW. Then u E C5,a(IR") and, if B=BR(xO) is any ball containing the support ofu, we 
have 

(4.14) 

Proof By virtue of the representation (2.17), 

(4.15) u(x)= f T(x- y)f( y) dy, 

so that the estimates for Du and D2u follow respectively from Lemmas 4.1 and 4.4 
and the fact that f has compact support in B. The estimate for 1 u 10; B follows at 
once from that for Du. 0 

The restriction that u has compact support can be removed, by various means, 
in order to achieve the following interior Holder estimate for solutions of Poisson 's 
equation. (See also Problem 4.4.) 

Theorem 4.6. Let Qbeadomain in IR" and let u E C 2(Q),fE C'(Q), satish' Poisson's 
equation ,1u= fin Q. Then u E C 2,a(Q) andfor any two concentric balls Bl = BR(xO)' 

B2 = B2R(x O) ceQ we have 

(4.16) 

where C= C(n, <x). 

Proof By either Green's representation (2.16) or Lemma 4.2 we can write for 
x E B2, u(x) = v(x) + w(x), where v is harmonic in B2 and w is the Newtonian 
potential offin B2 • By Theorem 2.10 and Lemmas 4.1 and 4.4, we have 

RIDwlo;B, + R2ID2wl~,a;B' ~ CR2Ifl~,a;B2 

RIDvlo;B, + R2ID2vl~,a;B' ~ q v10;B2 ~ c(luI0;B2 + R2IfI0;B). 

The last inequality is immediate from v = u - w when n > 2. For n = 2, by writing 
U(Xl' x 2 , x 3) = U(Xl' x 2), we may consider u to be a solution of Poisson's equation 
in a ball in 1R3 and the inequality follows in the same way. The desired estimate for u 
is obtained by combining these inequalities. 0 

An immediate consequence of the interior estimate (4.16) is the equicontinuity 
on compact subdomains of the second derivatives of any bounded set of solutions of 
Poisson's equation ,1u=f Consequently by Arzela's theorem we obtain an 
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extension of the compactness result, Theorem 2.11, to solutions of Poisson's 
equation. 

Corollary 4.7. Any bounded sequence of solutions of Poisson's equation Au=f 
in a domain D with f E C"(D) contains a subsequence converging uniformly on 
compact subdomains to a solution. 

I t is sometimes preferable to work with an alternative (but equivalent) formula
tion of the interior estimate (4.16) in terms of certain interior norms which will 
be useful later. For x, y E D, which may be any proper open subset of /Rh , let 
us write d,,=dist (x, aD), d".y=min (d", dy)' We define for u E Ck(D), Ck'''(D) 
the following quantities, which are the analogues of the global seminorms and 
norms (4.5), (4.6). 

(4.17) 

[u]t.o;o=[uJt;o= sup d!IDllu(x)l, k=O, 1,2, ... ; 
"eO 
11I1=k 

k 

lul:;o = lul:.o;o = L [u]j,o; 
j=O 

dk+·IDIIU(X)-DIIU(y)1 
[u]t, .. ;o= sup "y I I/J ,0<(%::;; I; 

x.yeO' x-y 
11l1=k 

lult /J'o=lult'o+[u]t /J'O' • I I • , 

In this notation, 

[u]6;0= luI6;0=lulo;0' 

We note that lulto and lulL;o are norms on the subspaces of Ck(D) and Ck'''(D) 
respectively for which they are finite. If D is bounded and d = diam D, then obviously 
these interior norms and the global norms ~4.6) are related by 

(4.17)' 

If D' c cD and CT=dist (D', aD), then 

(4.17)" 

It is convenient here to also introduce the quantity 

(4.18) Ifl(k}. =supdklf(x)l+ sup dk+/Jlf(x)-f(Y)I. 
0 ... ,0 x x,y IX-lJl" 

xeO x,yeO J 

This is a special case of certain norms to be defined later. 
From Theorem 4.6, we can now derive an interior estimate for arbitrary domains 

which will be generalized in very similar form to elliptic equations in Chapter 6. 
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Theorem 4.8. Let ue C 2(U), fe C«(U) satisfy Au=f in an open set Q of R". 
Then 

where C = C(n, IX). 

Proof If either lulo,u or lfl~~;u is infinite, the estimate (4.19) is trivial. Otherwise 
for x e Q, R=t dx' Bl =BR(x), B2=B2R(X), we have for any first derivative Du 
and second derivative D2u 

dxIDu(x)1 +d;ID2u(x)1 ~(3R)IDulo;Bl + (3R)2I D2ulo;Bl 

~ C(lulo;Bl + R2Ifl~"z;Bl) by (4.16) 

~ C(lulo;u + Ifl~~;u)· 
Hence we obtain 

To estimate [u]L;u we let x, y e Q with dx~d.,. Then 

d2+« ID2u(x)-D2u(Y)1 ~(3R)2+«[D2U] . 
x.Y lx-yl« II,BI 

+ 3«(3R)2(ID2u(x)1 + ID2u( y)1) 

~ C(lulo;Bl + R2Ifl~,«;Bl)+6[u]tu by (4.16) 

~c(lulo;u+lfl~~;u) by (4.20). 

The estimate (4.19) then follows. 0 

The preceding result provides bounds in compact subsets for Du, D2u and the 
Holder coefficients of D 2u in terms of a bound on the right member of (4.19), and 
hence it is the basis of compactness results for solutions of Poisson's equation. In 
particular, Corollary 4.7 is also an immediate consequence of Theorem 4.8, after 
noting that the latter implies the equicontinuity of solutions and of their first and 
second derivatives on compact subsets. 

By means of the compactness result, Corollary 4.7, we can now derive an 
existence theorem for Poisson's equation Au=ffor unboundedf 

Theorem 4.9. Let Bbeaball in R"andfafunction in CII(B)for which sup d;-Plf(x)1 
XEB 

~N < oofor some (3, O<{3< 1. Then thereexistsauniquefunctionu e C 2(B) n CO(B) 
satisfying Au = fin B, u = 0 on oB. Furthermore, u satisfies an estimate 

(4.21) sup d;Plu(x)1 ~ CN, 
XEB 

where the constant C depends only on p. 
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Proof The estimate (4.21) follows from a simple barrier argument. Namely, 
let B=BR(xO)' r=lx-xol and set 

By direct calculation, we have for r<R 

Llw(x) = -2p(R2-r2)1I-2[n(R2-r2)+2(l-p)r2] 

~ -4P(l-P>R2(R2-r2)11-2~ -P(l-P)RII(R-rY-2. 

Now suppose that Llu=/in B, u=O on oB. Since dx = R-r, we have by hypothesis 

1/(x)I~N d!-2 =N(R-r)II- 2 

~ - CoNLlw, where Co=[P(l-p)Rllr 1 , 

so that 

Consequently, by the maximum principle, 

(4.22) lu(x)1 ~ CoNw(x) ~ CNd! for x E B, 

which implies (4.21) with the constant C=2/P(l-P). 
Finally to show the existence of u, we let 

/",={; 
-m 

if/ ~m 

ifl/I~m 
if/ ~-m 

and let {Bk } be a sequence of concentric balls exhausting B such that I /1 ~ k in 
Bk • We define u", by Llu",=/", in B, u",=O on oB. 

By (4.21), we have 

sup d;lIlu",(x)1 ~C sup d;-"I/",(x)1 ~CN, 
xeB xeB 

so that the sequence {u",} is uniformly bounded and Llu",=/ in Bk , for m~k. 
Hence by Corollary 4.7, applied successively to the sequence of balls Bl;' a subse
quence of {u",} converges in B to a C 2(B) function u satisfying Llu=/in B. It 
follows that lu(x)1 ~CNd! and hence u=O on oB. 0 

It is easy to show by counterexample that Theorem 4.9 is false if p~O. We 
remark that the theorem may be extended to more general domains than balls; 
(see Problem 4.6). Also, for arbitrary domains with regular boundary points, the 
classical Dirichlet problem for Poisson's equation, Llu = f, is solvable for unbounded 
/satisfying certain integrability conditions; (see Problem 4.3). 
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4.4. Estimates at the Boundary 

Theorem 4.8 will be applied in Chapter 6 to the derivation of interior Holder 
estimates for linear elliptic equations. However in order to establish global 
estimates, which are required for the existence theory, we need a version of Theorem 
4.8 applicable to the intersection of a domain Q and a half-space. Let us first derive 
the appropriate extension of the Holder estimate for the Newtonian potential, 
Lemma 4.4. In what follows, IR: will denote the half-space, xn > 0, and T the 
hyperplane, xn=O; B2 = B2R(X O)' Bl = BR(xO) will be balls with center Xo E IR: 
and we let B; =B2 n IR:, Bt =B1 n IR:. 

Lemma 4.10. LetfE Ca(B;), and let w be the Newtonian potential offin B;. Then 
WE C 2.a(Bi) and 

where C = C(n, ~). 

Proof We assume that B2 intersects T since otherwise the result is already 
contained in Lemma 4.4. The representation (4.9) holds for Djjw with Qo=B;. If 
either i or j i= n, then the portion of the boundary integral 

f Djr(x- y)vj(y) dsy(= f Djr(x-Y)Vj(Y) ds y) 

DBi DB! 

on T vanishes since Vj or vj=O there. The estimates in Lemma 4.4 for Dijw 
(i or j i= n) then proceed exactly as before with B2 replaced by B; , B,,(~) replaced by 
B,,(~) n B; and iJB2 replaced by iJB; - T. Finally Dnnw can be estimated from the 
equation Aw= fand the estimates on Duw for k= 1, ... , n-l. 0 

'Theorem 4.11. Let U E C2(Bn n CO(Bn,f E ca(Bn, satisfy Au= fin B;, u=o 
on T. Then u E C2.a(Bi) and we have 

where C = C(n, ~). 

Proof Letx'=(x1 , ••• ,xn_ 1 ),x*=(x', -xn) and define 

We assume that B2 intersects T; otherwise Theorem 4.6 implies (4.24). We set 
B'i, = {x E 1R"lx* E Bn and D=B; u B'i, u (B2 n T). Then f* E ca(D) and 
If*I~.a;D~2Ifl~.a;Bi' Now, defining 
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(4.25) w(x)= f[r(x-y)-r(x*-y)]f(y)dy 
B1 

= f [r(x - y) - r(x - y*)]f(y) dy, 
B1 

we have w(x', 0)=0 (see Problem 2.3c) and L1w= fin B;. Noting that 

f r(x- y*)f(y) dy= f r(x- y)f*(y) dy, 
B, 

we then obtain 

w(x)=2 f r(x-y)f(y)dy- fr(x-Y)f*(y)dy. 
B; D 
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Letting w*(x) = f r(x - y)f*( y) dy, we have by the Remark following Lemma 
D 

Combining this with Lemma 4.10, we obtain 

Now let v=u-w. Then L1v=Oin B; and v=Oon T. By reflection v may be extended 
to a harmonic function in B2 (Problem 2.4) and hence the estimate (4.24) follows 
from the interior derivative estimate for harmonic functions, Theorem 2.10. 0 

Remark. If in addition to the hypotheses of Theorem 4.11, u has compact support 
in B; u T, we obtain from (4.26) the simpler estimate (extending (4.14» 

In this case we have the representation 

(4.28) u(x)=w(x)= f [r(x- y)-r(x*- y)]f(y) dy. 
Bi 

It will be useful to have an analogue of Theorem 4.8 in which the estimates are 
valid up to a hyperplane boundary piece. For this purpose we introduce certain 
partially interior norms and seminorms, analogous to (4.17) and (4.18). Let Q be a 
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proper open subset of R: with open boundary portion Ton x"=O. For x, YEO 
let us write 

a,,=dist (x, 00- T), a",y=min (a", ay)' 

We define the following quantities: 

[U]:,O;UvT=[U]:;UvT= sup a!IDllu(x)l, k=O, 1,2, ... ; 
"eU 
11I1=t 
k 

(4.29) lult;uuT = lult.o;UuT = L [U]j;uuT; 
j=O 

[ ]* _ aHa IDllu(x)-DlIu(Y)I, 
U t,II;UuT- sup %,y Ix- YI" O<oc~ I; 

",yeU 
1/lI=t 

lultll;Uv T= lul:;Uv T+ [U]:,II;UuT; 

I I(k) - akl ( )1 + aH IIIU(x)- u(Y)I. 
UO,,,;UuT-SUP "UX sup %,y I I" 

uU ",yeU X-Y 

We can now state: 

Theorem 4.12. Let 0 be an open set in R: with a boundary portion Ton x"=O, 
and lei U E C2(0) (J CO(O u T), f E C"(O u T) satisfy Au= fin 0, u=o on T. 
Then 

where C= C (n, oc). 

This result follows from Theorem 4.11 in the same way that Theorem 4.8 
follows from Theorem 4.6; the details of proof are therefore omitted. 

Theorems 4.11 and 4.12 provide a regularity result for solutions of Poisson's 
equation at a hyperplane portion of the boundary. More generally, if 0 is a 
bounded domain, fE C"(.Q), u E C2(0) (J CO(Q), Au= fin 0, and if 00 and the 
boundary values ofu are sufficiently smooth, it follows that u E C2,1I(U). This result, 
essentially Kellogg's theorem [KE I], will be established as a byproduct of our 
treatment of linear elliptic equations in Chapter 6. The case when 0 is a ball 
however is directly derivable from Theorem 4.11. 

Theorem 4.13. Let B be a ball in R" and u and f functions on B satisfying u E 

C 2(8) (J CO(B),JE C"(B), Au=fin B, u=o on oB. Then u E C 2,II(B). 

Proof Bya translation we may assume oB passes through the origin. The inver
sion mapping x -+ x* = x/lxl2 is a bicontinuous, smooth mapping of R" - {O} onto 
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itself which maps B onto a half-space, B*. Furthermore if u e C2(B) n CO(B), the 
Kelvin transform of u, defined by 

belongs to C2(B*) n CO(B*) and satisfies (see Problem 4.7). 

Hence Theorem 4.11 is applicable to the Kelvin transform v and since by transla
tion any point of aB may be taken for the origin we obtain u e C2''"(B). 0 

Corollary 4.14. Let qJ e C2 .,"(.8), / e C'"(B). Then the Dirichlet problem, Au= / 
in B, U=qJ on aB, is uniquely solvable/or a/unction u e C2·'"(B). 

Proof Writing V=U-qJ, the problem is reduced to the problem Av=/-AqJ in 
B, v=O on aB, which is solvable for ve C2(B) n COOl) by Theorem 4.3 and 
consequently for ve C2 ''"(B) by Theorem 4.13. 0 

As a byproduct of the proof of Theorem 4.13, we see that Lemma 4.4 may be 
imprOVed in the sense that if /e C'"(B), its Newtonian potential in B will belong 
to C 2''"(B). 

4.5. Holder Estimates for the First Derivatives 

Poisson's equation often appears in the form 

(4.33) 

where the density function is a divergence. The corresponding estimates of solutions 
can be reduced to those of the preceding sections, with certain generalizations that 
will be useful later. 

If f e C1''"(D), then, obviously, the estimates for the Newtonian potential of 
div f and for solutions of (4.33) are the same as before provided div f replaces / 
throughout. If D is sufficiently smooth, we have 

f r(x - y) div f(y) dy = f Dr(x - y). f(y) dy + f r(x - y)f· l'dsy , 

a a au 
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and, thus, the Newtonian potential of div fin Q is within a harmonic function given 
by 

(4.34) w(x) = D f r(x - y)f(y) dy = Dj f r(x - y)fj(y) dy. 

This expression is identical with the Newtonian potential when f has compact 
support in Q. We see that w is still defined when f is only integrable, in which case 
(4.34) can be taken as the definition of a generalized Newtonian potential of div f 
in Q. If, in addition, f is Holder continuous, the first derivatives of win Q are (as in 
Lemma 4.2) given by 

which can be estimated as in Lemma 4.4. Thus we have in the notation of Lemma 4.4 

(4.36) IDwlo.«;B, ~ Clflo,«:B2' C = C(n, a). 

We can, therefore, assert a C1,« interior estimate: 

Theorem 4.15. Let Q be a domain in ~n, and let u satisfy Poisson's equation (4.33), 
where f E C«(Q), 0 < a < 1. Then for any two concentric balls Bl = BR(xo), B2 = 
B2R(XO) ceQ we have 

(4.37) C = C(n, a). 

The proof is the same as that ofTheorem 4.6 if (4.36) replaces (4.11) in the argument. 
Corresponding boundary estimates can be derived in a similar way. If Bl and B2 

are as in Lemma 4.10, then the potential (4.34) has first derivatives given by (4.35), 
with Q = Bi, and we obtain the estimate 

(4.38) C = C(n, a). 

To obtain a C 1 ,« analogue of Theorem 4.11 for solutions of (4.33) vanishing on 
Xn = 0, we proceed as in that theorem with a method based on reflection. Let 

G(x, y) = rex - y) - r(x - y*) = r(x - y) - r(x* - y) 

denote the Green's function of the half-space ~n+, and consider 

(4.39) L'(X) = - f DyG(x, y) . fey) dy 

Bt 

= f Dr(x - y). fey) dy + f Dyr(x* - y). fey) dy. 

Bt Bt 
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For each i = 1. ... , n, let Vi denote the component of V given by 

We see that v and Vi vanish on T = B2 n {xn = O}. Now suppose f E ca(Bi), and 
let f be extended by even reflection in Xn = 0, and denote the extended function 
again by f. Then, for i = 1, ... , n - 1, we have as in the proof of Theorem 4.11, 

(4.40) 

And when i = n, since 

Bi Bi 

we obtain 

(4.41) vn(x) = Dn f r(x - y)f"(y) dy. 

BiuBi 

It now follows from (4.36) and (4.38), applied to (4.40) and (4.41), 

(4.42) C = C(n, IX). 

Theorem 4.16. Let u E CO(Bi) satisfy Poisson's equation (4.33), where f E C~(Bi), 

and suppose u = 0 on B2 n {xn = O}. Then 

(4.43) C = C(n, IX). 

The proof is obtained from (4.42) by the concluding argument in Theorem 4.11. 
It is also possible to state analogues of Theorems 4.3, 4.13 and Corollary 4.14 for 

solutions of (4.33). The details are left to the reader. 
The preceding results can also be extended to equations of the form 

(4.44) Llu = g + div f 

when f is Holder continuous and g is bounded and integrable. We observe that the 
first derivatives of the Newtonian potential of g satisfy an IX-Holder estimate for 
every IX < 1 (see Problem 4.8(a); also Theorem 3.9). From this estimate for the 
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Newtonian potential, it follows that the Ct,lI estimates for solutions of (4.44) cor
responding to (4.37) and (4.43) take the form 

(4.45) lul~,II;Bl ~ c(l u lo;B2 + R21glo;B2 + Rl f lo,II;B2) 

(4.46) lul'l,II;B{ ~ c(lulo;Bi + R2lglo;Bi + Rlflo,II;Bi) 

where C = C(n, IX). 

Remark. If 9 E L"(O), where p = n/(l - IX), then the terms containing 9 on the 
right-hand side in (4.45), (4.46) can be replaced by Rl +illigll, (see Problem 4.8(b». 

Notes 

The Holder estimates of this chapter are essentially due to Kom [KR I], 
In Lemma 4.2, Holder continuity can be replaced by Dini continuity, so that 

the Newtonian potential of/ is a C2 solution of Poisson's equation Liu = / if 

(4.47) 1/(x)-/(y)I~q><lx-yl), where f q>(r)r- 1 dr<oo; 

o· 

(see Problem 4.2). However, if/is only continuous the Newtonian potential need 
not be twice differentiable; (see Problem 4.9). 

The weighted interior norms and seminorms (4.17), (4.29) are adapted from 
Douglis and Nirenberg [DN]. The primary function of the partially interior norms 
and seminorms (4.29) is to facilitate the derivation of boundary estimates by direct 
imitation of the proofs ofihterior estimates; (see, for example, Theorem 4.12 and 
Lemma 6.4). 

Problems 

4.1. (a) Prove (4.7). (b) Iff E CII(~) and 9 E CP(O), show that fog E CIIP(U). 

4.2. Prove Lemma 4.2 if / is Dini continuous in 0 (i.e., / satisfies (4.47». 

4.3. Show that Theorem 4.3 continues to hold if the boundedness of/ is replaced 
by / E LP(Q) for some p > n/2; (see Lemma 7.12). 

4.4. Derive Theorem 4.6 from Theorem 4.5 by applying the representation 
formula (2.17) to v(x)=u(x),,(lx-xol/R), where" is a cut-off function such that 
" E C2(~), ,,(r) = 1 for r ~ !, ,,(r) = 0 for r ~ 2. 
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4.5. Prove the following extensions to Poisson's equation of the solid mean 
value inequalities (2.6) for Laplace's equation. Let U E C 2(O) n COCa) satisfy 
Au=(~, =e;;) lin O. Then for any ball 8= BR(y) c. 0, we have 

u(y)=(~, ~) {I~ f u dx- n~n f/(x)8(r, R) dX}, r=lx-yj, 
B B 

where 

4.6. Prove Theorem 4.9 if the ball B is replaced by an arbitrary bounded C2 

domain (use Lemma 14.16 and a comparison function dfJ '1, where '1 is a suitable 
cut-off function and d is the distance function). 

4.7. Let Au= I in Oc. Rn. Show that the Kelvin transform of u, defined by 

satisfies 

4.8. Let w be the Newtonian potential of I in B = BR(xO). 

(a) If IE L«>(B), show that Dw E C"(Rn) for every oc E (0,1) and 

(b) If IE U(B), where p = n/(1 - oc), 0 < oc < 1, show that Dw E CIZ(Rn) and 

[DW]IZ;B ~ C(n, oc) IIIllp;B. 

4.9. (a) For oc with loci = 2 let P be a homogeneous harmonic polynomial of 
degree 2 with DIZP ¢ 0 (e.g., P = Xt X2, D12 P = 1). Choose '1 E CO'({xllxl < 2}) 
with '1 = 1 when I x I < 1, set tIc = 2", and let c" -+ 0 as k -+ 00, with L c" divergent. 
Define 

«> 

I(x) = L c"A('1P)(t"x). 

° 
Show that I is continuous but that Au = I does not have a C2 solution in any 
neighbourhood of the origin. 
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(b ) For 0( with 10(1 = 3 choose a homogeneous harmonic polynomial Q of degree 
3 with DaQ =1= O. With '1, tk and Ck as in part (a), define 

Then 

00 00 

u(x) = L Ck'1(tkX)Q(x) = L Ck('1Q) (tkx)M· 
o 0 

00 

Au = g(x) = L ckA('1Q)(tkx)/tk • 
o 

Showthatg E C 1 butthatu If C2 , 1 in any neighbourhood oftheorigin. Hence Lemma 
4.4 is not valid for 0( = 1. 

4.10. Let u E q(B) satisfy Au = fin B = BR(xo)' Show that 

(b) IDiUlo~Rlflo, i= 1, ... ,n. 

Hence in (4.14), IUl'l;B ~ 3R2 Iflo;B' 



Chapter 5 

Banach and Hilbert Spaces 

This chapter supplies the functional analytic material required for our study of 
existence of solutions of linear elliptic equations in Chapters 6 and 8. This material 
will be familiar to a reader already versed in basic functional analysis but we shall 
assume some acquaintance with elementary linear algebra and the theory of metric 
spaces. Unless otherwise indicated, all linear spaces used in this book are assumed 
to be defined over the real number field. The theory of this chapter, however, carries 
over almost unchanged if the real numbers are replaced by the complex numbers. 
Let "Y' be a linear space over R A norm on "i/ is a mappingp: "i/ -+ JR (henceforth 
we write p(x) = IIx II = IIx Iloy, x E "i/) satisfying 

(i) IIxll ~O for all x E "i/, Ilxll =0 if and only if x =0; 
(ii) II ax II =Iallixil for all a E JR, x E "i/; 

(iii) IIx + yll ::s;; IIxll + II yll for all x, y E "i/ (triangle inequality). 

A linear space "i/ equipped with a norm is called a normed linear space. A normed 
linear space "YO is a metric space under the metric p defined by 

p(x, y)= IIx-YII, x, y E "i/. 

Consequently a sequence {xn} c "i/ converges to an element x E "i/ if IIxn - x II -+ O. 
Also {xn} is a Cauchy sequence if Ilxn-xmll-+ 0 as m, n -+ 00. If"i/ is complete, 
that is every Cauchy sequence converges, then j/" is called a Banach space. 

Examples. (i) Euclidean space JRn is a Banach space under the standard norm: 

Ilxll =(tl x;Y/2, x=(xl"'" xn)· 

(ii) For a bounded domain Dc JRn, the Holder spaces Ck.CI(Q) are Banach 
spaces under either of the equivalent norms (4.6) or (4.6)' introduced in Chapter 4; 
(see Problems 5.1, 5.2). 

(iii) The Sobolev spaces W",P(Q), W~'P(Q) (see Chapter 7). 

Existence theorems in partial differential equations are often reducible to the 
solvability of equations in appropriate function spaces. For the Schauder theory of 
linear elliptic equations we will employ two basic existence theorems for operator 
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equations in Banach spaces, namely the Contraction Mapping Principle and the 
Fredholm alternative. 

5.1. The Contraction Mapping Principle 

A mapping T from a normed linear space 1"'" into itself is called a contraction map
ping if there exists a number 0 < 1 such that 

(5.1) IITx-Tyll~Ollx-yll forallx,ye1"'". 

Theorem 5.1. A contraction mapping T in a Banach space ~ has a uniquefixed point, 
that is there exists a unique solution x e ~ of the equation Tx = x. 

Proof (Method of successive approximations.) Let Xo e ~ and define a sequence 
{x,,} c~ by x" = T"xo, n= 1,2, ... Then if n~m, we have 

" IIx,,-xIIIII~ L IIxj-xj_lll by the triangle inequality 
j=m+ 1 

" = L IITj-l x1 -Tj-l xo ll 
j=III+ 1 

" ~ L (Ji-ll1x 1- xoll by (5.1) 
j=III+ 1 

IIxl -xolIO'" 0 
~ -+ asm-+ 00. 

1-0 

Consequently {x,,} is a Cauchy sequence and, since ~ is complete, converges to an 
element x e ~. Clearly T is also a continuous mapping and hence we have 

Tx= lim Tx,,= lim x" + 1 =X 

so that x is a fixed point of T. The uniqueness of x follows immediately from 
(5.1). 0 

In the statement of Theorem 5.1, the space ~ can obviously be replaced by any 
closed subset. 

5.2. The Method of Continuity 

Let 1"'"1 and 1"'"2 be normed linear spaces. A linear mapping T: 1"'"1 -+ 1"'"2 is bounded 
if the quantity 

(5.2) II Til = sup II Tx 1I"Y2 
u"Y,.x,*o II x ll"Y, 
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is finite. It is easy to show that a linear mapping T is bounded if and only if it is 
continuous. The invertibility of a bounded linear mapping may sometimes be 
deduced from the invertibility of a similar mapping through the following theorem, 
which is known in applications as the method of continuity. 

Theorem 5.2. Let fJI be a Banach space, "I' a normed linear space and let Lo' L. 
be bounded linear operators from rJI into "1'. For each t E [0, 1], set 

and suppose that there is a constant C such that 

for t E [0, 1]. Then Ll maps rJI onto "I' if and only if Lo maps rJI onto "1'. 

Proof Suppose that L. is onto for some s E [0, 1]. By (5.3), L. is one-to-one and 
hence the inverse mapping L.-·: "1/' -+ rJI exists. For IE [0, 1] and y E "1', the 
equation L,x = y is equivalent to the equation 

L.(x) = y +(L. - Lr)x 

= y+ (t-s)Lox -(t-s)L.x 

which in turn, is equivalent to the equation 

The mapping T from rJI into itself given by Tx=L; ·y+(t-s)L; ·(Lo-L.)x is 
clearly a contraction mapping if 

and hence the mapping L, is onto for all I E [0, 1], satisfying Is -II < lJ. By dividing 
the interval [0, 1] into subintervals oflength less than lJ, we see that the mapping 
L, is onto for all t E [0, 1] provided it is onto for any fixed t E [0,1], in particular 
for t=O or 1= 1. 0 

5.3. The Fredholm Alternative 

Let "1'. and "1'2 be nonned linear spaces. A mapping T: "1'. -+ "1'2 is called compact 
(or completely continuous) if Tmaps bounded sets in "1'. into relatively compact sets 
in "1'2 or equivalently Tmaps bounded sequences in "1'. into sequences in "1'2 which 
contain convergent subsequences. It follows that a compact linear mapping is also 
continuous but the converse is not true in general unless "I' 2 is finite dimensional. 
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The Fredholm alternative (or Riesz-Schauder theory) concerns compact linear 
operators from a space "Y into itself and is an extension of the theory of linear 
mappings in finite dimensional spaces. 

Theorem 5.3. Let T be a compact linear mapping of a normed linear space "Y into 
itself. Then either '(1) the homogeneous equation 

x-Tx=O 

has a nontrivial solution x E "Y or (ii) for each y E "Y' the equation 

x-Tx=y 

has a uniquely determined solution x E 1"". Furthermore, in case (ii), the operator 
(1- T) - 1 whose existence is asserted there is also bounded. 

The proof of Theorem 5.3 depends upon the following simple result of Riesz. 

Lemma 5.4. Let "Y be a normed linear space and vii a proper closed subspace of 
"Y. Then for any 0< I, there exists an element xe E "Y satisfying Ilxell = I and 
dist (xe, vII)~ O. 

Proof Let x E "Y - vii. Since vii is closed, we have 

dist (x, vii) = inf Ilx-yll =d>O. 
yEM 

Consequently there exists an element Ye E vii such that 

so that, defining 

X-Ye 
X= , 
e Ilx-yell 

we have Ilxell = I and for any Y Evil, 

The lemma is thus proved. 0 
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If l' = ~., it is clear that one can take 0 = I by choosing X9 orthogonal to JI(. 

This will also be possible in any Hilbert space but in general Lemma 5.4, which 
asserts the existence of a "nearly orthogonal" element to JI(, cannot be improved 
to allow 0= I. 

Proof of Theorem 5.3. It is convenient to split our proof into four stages. 
(I) Let S=/-T where / is the identity mapping and let .. V=S-I(O)= 

{x E r I Sx=O} be the null ~pace of S. Then there exists a constant K such that 

(5.4) dist (x, A')~ KII Sx!1 for all x E 1. 

Proof Suppose the result is not true. Then there exists a sequence {x.} c 1" 

satisfying II Sx.11 = I and d. = dist (x.' . V) ---+ 00. Choose a sequence {y.} c . .IV 
such that d.~ II x. - y.11 ~ ld •. Then if 

x.-y. 
=.= Ilx.- Y.II 

we have II z.1I = I, and II Sz. II ~ d;; 1 ---+ 0 so that the sequence {Sz.} converges to 
O. But since Tis compact, by passing to a subsequence if necessary, we may assume 
that the sequence {Tz.} converges to an element)'o E r Since z.=(S+ nz., we 
then also have {z.} converging to Yo and consequently Yo E . .IV. However this leads 
to a contradiction as 

= Ilx.- y.II- ' inf Ilx.-y.-llx.- Y.II yll 
yeA' 

=llx.-y.II- ' dist(x., .jV):~t. 0 

(2) Let & = S(1') be the range of S. Then ~ is a closed subspace of r. 

Proof Let {x.] be a sequence in 'f~ whose image {Sx.} converges to an element 
Y E 'f: To show that & is closed we must show that y= Sx for some element 
x E "/". By our previous result the sequence {d.} where d. = dist (x., AI) is bounded. 
Choosing Y. E .4-" as before and writing w. = x. - Y., we consequently have that the 
sequence {w.l is bounded while the sequence {Sw.} converges to y. Since T is com
pact, by passing to a subsequence if necessary we may assume that the sequence 
{Tw.} converges to an element Wo E 1'~. Hence the sequence {w.} itself converges 
to y+ Wo and by the continuity of S, we have S( y+ wo) = y. Consequently ~ is 
closed. 0 

(3) If·,,v·={O}, then &='1: That is, if case (i) of Theorem 5.3 does not hold, 
then case (ii) is true. 

Proof By our previous result the sets ~ j defined by & j = S j( '1/' ), j= I, 2, ... 
form a non-increasing sequence of closed subspaces of 1': Suppose that no two of 
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these spaces coincide. Then each is a proper subspace of its predecessor. Hence by 
Lemma 5.4, there exists a sequence {yn}c1' such that Yne9tn' IIYnll=1 and 
dist (Yn , 9tn+ 1 );~t. Thus if n > m, 

TYm- TYn= Ym+( -yn-Sym+SYn) 

=Ym-Y forsomeyeYlm + l · 

Hence II TYm- TYnll ~t contrary to the compactness of T. Consequently there 
exists an integer k such that 9tj =9t" for all j~k. Up to this point we have not 
used the condition: % = {O}. Now let y be an arbitrary element of 1'. Then 
S"ye9t,,=!1Il+ 1 and so S"y=Sl+I X for some xe1'. Therefore S"(y-Sx)=O 
and so y=Sx since S-"(O)=S-I(O)=O. Consequently a=!1Ij = l' for allj. 0 

(4) If 9t= 1', then ,At" = {O}. Consequently either case (i) or case (ii) holds. 

Proof This time we define a non-decreasing sequence of closed subspaces {%.} 
. 1 

by setting .Kj = S-1(0). The closure of %j follows from the continuity of S. By 
employing an analogous argument based on Lemma 5.4 to that used in step (3), 
we obtain that %j = %, for all j~ some integer I. Then if 9t = 1'. any element 
ye oK, satisfiesy= S'x for some x e "Y. Consequently S2'X =0 so that x e %2' = oK, 
whence y=S'x=O. Step (4) is thus proved. 0 

The boundedness of the operator S- 1 = (1- T) - 1 in case (ii) follows from 
step (l) with % = {O}. Note that a slight simplification could be achieved by taking 
.K = {O} at the outset in steps (1) and (2) and that step (4) is independent of the 
previous steps. Theorem 5.3 is thus completely proved. 0 

Certain aspects of the spectral behaviour of compact linear operators follow 
from Theorem 5.3 and Lemma 5.4. A number A is called an eigenvalue of Tifthere 
exists a non-zero element x in l' (called an eigenvector) satisfying TX=AX. It is 
clear that eigenvectors belonging to different eigenvalues must be linearly inde
pendent. Also the dimension of the null space of the operator SA = A.I - T is called 
the multiplicity of A. If A #= 0, e R is not an eigenvalue of T, it follows from Theorem 
5.3 that the resolvent operator RA =(AI- T)-I is a well defined, bounded linear 
mapping of l' onto itself. From Lemma 5.4 we may deduce the following result. 

Theorem 5.5. A compact linear mapping T of a normed linear space into itself pos
sesses a countable set of eigenvalues having no limit points except possibly A = O. Each 
non-zero eigenvalue has finite multiplicity. 

Proof Suppose that there exists a sequence {A.n} of not necessarily distinct eigen
values and a sequence of corresponding linearly independent eigenvectors {xn } 

satisfying An -+ A #= O. Let .An be the closed subspace spanned by {x I' ... xn }. 
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By Lemma 5.4, there exists a sequence {y.} such that Y. e ~H., II y.11 = 1 and 
dist (Y., A .-I)~t, (n= 2,3 ... ). If n>m, we have 

A.,;-l Ty. -A.';; 1 TYm= Y. +( - Ym _A.,;-I SA.Y. + A.';; 1 SA",Ym) 

=y.-z wherezeA._ 1 , 

n n 

For, if Y.= L PjXj then Y.- A.,;-I Ty.= L PP -A.; 1 A.)Xj e ~H .-1 and similarly 
j=1 j=1 

SA ... Ym e Am' Therefore we have 

IIA; 1 Ty. -A';; 1 TYml1 ~t 

which contradicts the compactness of T combined with the hypothesis An -+ A '# O. 
Hence our initial supposition is false and this implies the validity of the theorem. 0 

5.4. Dual Spaces and Adjoints 

For the sake of completeness we mention a few results here that will be proved and 
applied in this book only in Hilbert spaces. Let "Y be a normed linear space. A 
functional on "Y is a mapping from "Y into IR. The space of all bounded linear 
functionals on "Y is called the dual 'space of "Y and is denoted by "Y *. It can be 
shown easily that "Y * is a Banach space under the norm: 

(5.5) 
If(x)1 

IIfII.y. = ~~~ Txf 

Example. The dual space of IR· is isomorphic to IR· itself. 

The dual space of"Y *, denoted "Y .. , is called the second dual of "Y. Clearly the 
mappingJ: "Y -+ "Y ** given by Jx(f) =f(x) forf e "Y * isanorm preserving, linear, 
one-to-one mapping of "Y into "Y ... If J"Y = "Y .. , then we call 1" reflexive. Re
flexive Banach spaces have certain properties that make them more amenable to 
applications to differential equations than Banach spaces in general. The Sobolev 
spaces W",P(Q) introduced in Chapter 7 are reflexive for p> 1 but the Holder 
spaces Ck'~(Q) of Chapter 4 are nonreflexive. 

Let T be a bounded linear mapping between two Banach spaces 91 1 and 912 , 

The adjoint of T, denoted T*, is a bounded linear mapping between 91! and PA! 
defined by 

(5.6) (T*g)(x)=g(Tx) forge9l!,xePA I . 
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Letting .K, 9t .. K*, 9t* denote the null spaces and ranges of T. T* respectively, 
the following relations hold provided 9t is closed, 

9t =.K *.1. = {y E ~2Ig(y)=O for all 9 E .K*}, 

9t*=.K.l.={fE~!lflx)=O forallxE.K}. 

Also the compactness of T implies the compactness of T*. These two results are 
proved for example in [YO]. Consequently we see that if case (i) of the Fredholm 
alternative holds for a Banach space ~, then the equation x - Tx = y is solvable 
for x E ~ if and only if g( y) = 0 for all 9 E £f* satisfying T* 9 = g. This last result 
will be established directly in Hilbert spaces. 

5.5. Hilbert Spaces 

We develop here the Hilbert space theory required for our treatment of linear 
elliptic operators in Chapter S. A scalar (or inner) product on a linear space "Y 
is a mapping q: "Y x "Y ---+ R (henceforth we write q(x, y)=(x, y) or (x, y).,., 
x, y E "Y ) satisfying 

(i) (x, y) = (y, x) for all x, y E "Y, 

(ii) (A. 1 x 1+ A2X 2, y) = AI (x l' y) + A2(X2, y) for all AI' A,2 E R, x I' x2, Y E "Y, 

(iii) (x, x»O for all x#O, E "Y. 

A linear space "r equipped with an inner product is called an inner product space or 
a pre-Hilbert space. Writing IIxll =(x, X)I/2 for x E "Y, we have the following 
inequalities: 

Schwarz inequality 

(5.7) I(x, y)l:S;; II xII !I yll; 

Triangle inequality 

(5.S) IIx+ yll:S;; IIxll + II yll; 

Parallelogram law 

In particular an inner product space "Y is a normed linear space. A Hilbert space 
is defined to be a complete inner product space. 
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Examples. (i) Euclidean space IRn is a Hilbert space under the inner product 

(ii) The Sobolev spaces Wk. 2(0); (see Chapter 7). 

5.6. The Projection Theorem 

Two elements x and y in an inner product space are called orthogonal (or perpen
dicular) if(x, y)=O. Given a subset vi( of an inner product space we denote by vI(.1 
the set of elements orthogonal to every element of vI(. The following theorem asserts 
the existence of an orthogonal projection of any element in a Hilbert space onto a 
closed subspace. 

Theorem 5.6. Let vi( be a closed subspace 0/ a Hilbert space~. Then/or every 
x E Yf' we have x = y + z where y E vi( and Z E vI(.1 . 

Proof If x E vI(, we set y=X, z=O. Hence we may assume vi( #~and x If .If. 
Define 

d=dist (x, vI()= inf Ilx-YIl >0 
ye .At 

and let {Yn} c "'t bea minimizing sequence, that is Ilx - Ynll -+ d. Using the parallelo
gram law we obtain 

so that, since t( Ym + Yn) E vI(, also we have II Ym - Ynll -+ 0 as m, n -+ 00; that 
is the sequence {Yn} converges since ~ is complete. Also, since vi( is closed, 
Y= lim Yn E vi( and !Ix - YII =d. 

Now write x=y+z where z=x-y. To complete the proof we must show 
z E ,1t.1. For any y' E.1t and IX E IR we have y+ IXY' E vi( and so 

d 2 ~ lix-Y-lXy'f=(Z-IXY', z-IXY') 

= II z 112 - 21X( Y " z)+ 1X211 Y' 211. 

Therefore, since II zll = d, we obtain for all IX > 0 

so that (y', z)=O for all y' E vI(. Hence z E vI(.1. 0 
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The element y is called the orthogonal projection of x on .,II. Theorem 5.6 also 
shows that any closed proper subspace of Jf is orthogonal to some element of Jf. 

5.7. The Riesz Representation Theorem 

The Riesz representation theorem provides an extremely useful characterization 
of the bounded linear functionals on a Hilbert space as inner products. 

Theorem 5.7. For every bounded linear functional F on a Hilbert space Jf. there 
is a uniquely determined element f E Jf such that F(x) = (x,f) for all x E Jf and 

IIFII= II/II· 

Proof Let %= {xIF(x)=O} be the null space of F. If %= Jf, the result is proved 
by taking /=0. Otherwise, since % is a closed subspace of Jf, there exists by 
Theorem 5.6 an element z # 0, E Jf such that (x, z) = 0 for all x E %. Hence 
F(z) #0 and moreover for any x E Jf, 

F(X- F(x) Z)=F(X)- F(x) F(z)=O 
F(z) F(z) 

so that the element x - F(x) z E 5. This means that 
F(z) 

that is, that 

( x- F(x) z z)=o 
F(z)' , 

F(x) 
(x, z)= F(z) IIzll2 

and hence F(x)=(f, x) where/=zF(z)/IIzIl 2. The uniqueness of/is easily proved 
and is left to the reader. To show that IIFII = IIfII, we have first, by the Schwarz 
inequality, 

IIFII l(x,f)I._'" IIxil IIfII 
= sup--"" sup---

x*o IIxil x*o IIxil 

and secondly, 

IIfII2=(f,/)=F(f)~ IIFII IIfII, 

so that 1I/II~IIFII,andhence IIFII = IIfII· 0 

IIfII ; 

Theorem 5.7 shows that the dual space of a Hilbert space may be identified with 
the space itself and consequently that Hilbert spaces are reflexive. 
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5.8. The Lax-Milgram Theorem 

The Riesz representation theorem suffices for the treatment oflinear elliptic equa
tions that are variational, that is, they are the Euler-Lagrange equations of certain 
mUltiple integrals. For general divergence structure equations we will require a 
slight extension of Theorem 5.7 due to Lax and Milgram. A bilinear form B on a 
Hilbert space Yf is called bounded if there exists a constant K such that 

(5.10) IB(x.Y)I~KllxIIIlYII forallx,YEYf 

and coercive if there exists a number v> 0 such that 

(5.11) B(x, x)~vllxIl2 for all x E Yf. 

A particular example of a bounded, coercive bilinear form is the inner product 
itself. 

Theorem 5.S. Let B be a bounded, coercive bilinear form on a Hilbert space Yf. 
Then for every bounded linear functional FE Jff*, there exists a unique element 
f E Jff such that 

B(x,f) = F(x) for all x E Jff. 

Proof By virtue of Theorem 5.7, there exists a linear mapping T: Yf -+ Jff 
defined by B(x, f)=(x, Tf) for all x E Jff. Furthermore II Tfll ~Kllfil by (5.10) 
so that Tis bounded. By (5.11) we obtain vllfI12~B(f,f)=(f, Tf)~llfllIITfII, 
so that 

vllfll ~ II Tfll ~Kllfll for allfE Yf. 

This estimate implies that Tis one-to-one, has closed range (see Problem 5.3) and 
that T- 1 is bounded. Suppose that Tis not onto Jff. Then there exists an element z of:. 0 
satisfying (z, Tf)=O for allfE Yf. Choosingf=z, we obtain (z, Tz)=B(z, z)=O 
implying z=o by (5.11). Consequently T- 1 is a bounded linear mapping on Yf. 
We then have F(x)=(x, g)=B(x, rig) for all x E Yf and some unique g E Jff 
and the result is proved withf= rig. 0 

5.9. The Fredholm Alternative in Hilbert Spaces 

Theorems 5.3 and 5.5 are of course applicable to compact operators in Hilbert 
spaces. Let us derive now for Hilbert spaces our earlier remarks concerning adjoints 
in Banach spaces. In light of Theorem 5.7, we define the adjoint slightly differently. 
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If T is a bounded linear operator in a Hilbert space JI?, its adjoint T* is also a 
bounded linear mapping in Yf' defined by 

(5.12) (T*y,x)=(y, Tx) forallx,YEYf'. 

Clearly II T* /I = /I Til, where /I T/I = sup /I Tx/l//lx/l. 
"'''0 

Lemma 5.9. If T is compact, then T* is also compact. 

Proof Let {x,,} be a sequence in Yf'satisfying /lx,,/I ~M. 
Then 

/IT*X,,/l2=(T*x,,, T*x")=(x,,, TT*x,,) 

~ /lx,,/I /lTT*x,,/I 

~M /I TIl IIT*x"II, 

so that IIT*x,,/I~MIITII; that is, the sequence {T*x,,} is also bounded. Hence, 
since T is compact, by passing to a subsequence if necessary, we may assume that 
the sequence {TT*x,,} converges. But then 

/I T*(x" - Xm) 112 = (T*(x" - xm), T*(x" - Xm» 

= (x" - xm' TT*(x" - xm» 

~2MIITT*(x,,-xm)lI-+ 0 as m, n -+ 00. 

Since Yf' is complete, the sequence {T* x,,} is convergent and hence T* is compact. 0 

Lemma 5.10. The closure of the range of T is the orthogonal complement of the null 
space ofT*. 

Proof Let 9l = the range of T, .K * = the null space of T*. If Y = Tx, we have 
(y./)=(Tx,/)=(x, T*j)=O for allfE .K* so that 9lc.K*\ and since %*1. is 
closed, lit c % *.1. Now suppose that y ¢ lit. By the projection theorem, Theorem 
5.7,y= Yt + h whereYt E Iit,yz E 1it.1 - {O}. Consequently (Y2' Tx)=(T*Y2' x)=O 
for all x E Yf', so that Y2 E % *. Therefore (Y2' y) =( Y2' Yt)+ II Y211 2 = II Y211 2 and 
hencey¢ %u. 0 

Note that Lemma 5.10 is valid whether or not T is compact. By combining 
Lemmas 5.9 and 5.10 with Theorems 5.3 and 5.5, we then obtain the following 
Fredholm alternative for compact operators in Hilbert spaces. 

Theorem 5.11. Let Yf' bea Hilbert space and Ta compact mapping of Yf' into itself. 
Then there exists a countable set A c R having no limit points except possibly A. =0, 
such that if A.#O, A. ¢ A the equations 

(5.13) A.X- Tx= y, A.X- T*x= y 
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have uniquely determined solutions x E Yf for every y E Yf, and the inverse mappings 
(AI - T) - 1, (AI - T*) - 1 are bounded. If A E A, the null spaces of the mappings AI - T, 
AI - T* have positive finite dimension and the equations (5.13) are solvable if and 
only if y is orthogonal to the null space of AI - T* in the first case and AI - T in 
the other. 

5.10. Weak Compactness 

Let r be a normed linear space. A sequence {xm} converges weakly to an element 
x E j' if J(xn) -+ f(x) for all f in the dual space l' *. By the Riesz representation 
theorem, Theorem 5.7, a sequence {xn} in a Hilbert space Yf will converge weakly 
to x E Yf if (xn, y) -+ (x, y) for all Y E Yf. The following result is useful in the 
Hilbert space approach to differential equations. 

Theorem 5.12. A bounded sequence in a H ilber! space contains a weakly convergent 
subsequence. 

Proof Let us assume initially that :tt' is separable and suppose that the sequence 
{xn}cYf satisfies !!xn!!::;;M. Let {Ym} be a dense subset of:tt'. By the Cantor 
diagonal process we obtain a subsequence {x nk } of our original sequence satisfying 
(xnk , Ym) -+ (Xm E ~as k -+ 00. The mappingf: {Ym} -+ ~defined byJ( Ym) = (Xm may 
consequently be extended to a bounded linear functionalJ on :tt' and hence by the 
Riesz representation theorem, there exists an element x E :tt' satisfying (xnk . y) -+ 

J(y)=(x, y) as k-+ 00, for all YE:tt'. Hence the subsequence {xnJ converges 
weakly to x. 

To extend the result to an arbitrary Hilbert space:tt', we let.Yt' 0 be the closure of 
the linear hull of the sequence {x n }. Then by our previous argument there exists a 
subsequence {xnk } c.Yf 0 and an element x E :tt' 0 satisfying (xnk ' y) -+ (x, y) for all 
YE:tt'o' But by Theorem 5.5, we have for arbitrary YE:tt', Y=YO+Yl' where 
Yo E :tt'o. Y 1 E :tt't· Hence (xnk ' y) = (xnk ' Yo) -+ (x, Yo) = (x, y) for all y E :tt' so 
that {xnk } converges weakly to x, as required. 0 

The first part of the proof of Theorem 5.12 extends automatically to reflexive 
Banach spaces with separable dual spaces (see Problem 5.4). The result is true 
however for arbitrary reflexive Banach spaces (see [YO]). 

Notes 

The material in this chapter is standard and can be found in texts on functional 
analysis such as [OS], [EW] and [YO]. 
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Problems 

5.1. Prove that the Holder spaces Ck"(Q), introduced in Chapter 4, are Banach 
spaces under either of the equivalent norms (4.6) or (4.6)'. 

5.2. Prove that the interior Holder spaces C!· '(Q) defined by 

are Banach spaces under the interior norms given by (4.17). 

5.3. Let fJI be a Banach space and T be a bounded linear mapping of fJI into itself 
satisfying 

IIx II :::; KII Tx II for all x E fJI, 

for some K E IR. Prove that the range of T is closed. 

5.4. Prove that a bounded sequence in a separable, reflexive Banach space con
tains a weakly convergent subsequence. 



Chapter 6 

Classical Solutions; the Schauder Approach 

This chapter develops a theory of second order linear elliptic equations that is 
essentially an extension of potential theory. It is based on the fundamental observa
tion that equations with Holder continuous coefficients can be treated locally as a 
perturbation of constant coefficient equations. From this fact Schauder ESC 4. 5] 
was able to construct a global theory. an extension of which is presented here. Basic 
to this approach are apriori estimates of solutions. extending those of potential 
theory to equations with Holder continuous coefficients. These estimates provide 
compactness results that are essential for the existence and regularity theory, and 
since they apply to classical solutions under relatively weak hypotheses on the 
coefficients, they play an important part in the subsequent nonlinear theory. 

Throughout this chapter we shall denote by Lu=fthe equation 

where the coefficients and f are defined in an open set Dc~" and. unless other
wise stated. the operator L is strictly elliptic; that is. 

for some positive constant A. 
Equations with constant coefficients. Before treating equation (6.1) with variable 

coefficients, we establish a necessary preliminary result that extends Theorems 4.8 
and 4.12 from Poisson's equation to other elliptic equations with constant coef
ficients. We state these extensions in the following lemma, recalling the interior and 
partially interior norms defined in (4.17), (4.18) and (4.29). Here and throughout 
this chapter all Holder exponents will be assumed to lie in (0, 1) unless otherwise 
stated. 

Lemma 6. t. In the equation 
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let [A jj] be a constant matrix such that 

for positive constants A., A. 

(a) Let u e C 2(O),fe C3(0) satisfy Lou=fin an open set 0 oflRn. Then 

where C= C(n, (x, A., A). 

(b) Let 0 be an open subset oflR: with a boundary portion Ton xn=O, and let 
u e C 2(0) n CoCO u T), fe C"(O u T) satisfy Lou=f in 0, u=o on T. Then 

where C= C(n, (x, A., A). 

Proof Let P be a constant matrix which defines a nonsingular linear transforma
tion y=xP from IRn onto IRn. Letting u(x) -+ u(y) under this transformation one 
verifies easily that 

Ajj Djp(x) =Aii DJi( y), 

where A= pt AP (pt = P transpose). For a suitable orthogonal matrix P, A is a 
diagonal matrix whose diagonal elements are the eigenvalues A.1' ... , A.n of A. If, 
further, Q= PD, where D is the diagonal matrix [A.j-l/2c5jj]' then the transforma
tion y=xQ takes Lou=f(x) into the Poisson equation L1u(y)=J(y), where 
u(x) ---+ u(y),j(x) -+ J(y) under the transformation. Bya further rotation we may 
assume that Q takes the half-space xn > 0 onto the half-space y n > O. 

Since the orthogonal matrix P preserves length, we have 

It follows that if 0 -+ D, vex) ---+ v(y) under the transformation y= xQ then the 
norms (4.17), (4.18) defined on 0 and D are related by the inequalities 

(6.6) k = 0, 1, 2, ... , 0 ~ (X ~ 1, 
- 1 I I(k) ~ I-I(k) - -- I I(k) C V 0, .. ;11 """ V 0, .. ;11 ~ C V 0, .. ;11 

where c=c(k, n, A., A). 

Similarly if 0 is an open subset of IR: with a boundary portion T on xn = 0 
which is taken by y = xQ into the set il in IR: with boundary portion t, the norms 
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(4.29) in Q and Q satisfy the inequalities 

(6.7) 
-111* :!(I-I* :!( 11* C Vk.Gl;UvT-...:: Vk.Gl;i)vT-...::CVk.Gl;UvT' 

-11 I(k) :!(I-I(k) :!( I I(k) 
C VO.Gl;UvT-...:: VO.Gl;UvT",CVO.Gl;UvT' 

where C is the same constant as in (6.6). 

To prove part (a) of the lemma we apply Theorem 4.8 in Q and the inequalities 
(6.6) to obtain 

luli.Gl; 0 ~ Cluli. Gl; U ~ C(lul o; ii+ I JI~~'Gl;ii) ~ C(lul o; 0 + Ifl~~'" 0)' 

which is the desired conclusion (6.4). (Here we have used the same letter C to de
note constants depending on n. IX. A, A.) 

Part (b) of the lemma is proved in the same way. using Theorem 4.12 and the 
inequalities (6.7). 0 

Lemma 6.1 provides an immediate extension of the estimates on balls in 
Theorems 4.6 and 4.11 from Poisson s equation to the more general equation with 
constant coefficients (6.3). Of course in the latter case the constant C depends on 
A.. A as well as n. IX. 

6.1. The Schauder Interior Estimates 

Our first objective in the study of the equation Lu = fis the derivation of the Schauder 
interior estimates. which play an essential part in the ensuing treatment of the 
existence and regularity theory. These estimates are based on the same kind of 
result already obtained in (6.4) for solutions of Lou = f 

To obtain estimates for the interior norm luli.Gl;o of solutions of Lu=fin Q. 

it suffices to bound only lul o; U and the seminorm [u]!, Gl: 0 (defined in (4.17». That 
this is so is a consequence of the following interpolation inequalities. 

Let u E C 2. <1(Q), where Q is an open subset of IR". Then for any e > 0 there is a 
constant C= C(e) such that 

}=o. I, 2; O~IX. f3~ l,}+ f3<2+1X; 

These inequalities are proved in Lemma 6.32 of Appendix I to this chapter. 
In order to state the Schauder estimates in a sharp form. and also for subse

quent applications. we introduce the following additional interior seminorms and 
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norms on the spaces Ck(Q), Ck'~(Q). For (1 a real number and k a non-negative 
integer we define 

[f]la) , = (f]'~) = sup dxk+aIDfJ'j(x)l; k.O,n k,n 
xen 
IfJl =k 

[(]Ia) = sup dk+2+aI DfJ/(x)-D fJ/(Y)1 O<!X~I; 
, k. a;n x, Y Ix _yla 

x')'e n 
(6,10) 

IfJl =k 

k 

I Ill:~ = L [/]j~h; 
j= ° 

I fi la) -1/1'a) + [j']la) 
. k.2;n- k;n k. x;n' 

In this notation, when (1 = 0 these quantities are identical with those defined in 
(4.17), so that [.],01=[.]* and 1,1 (0 )=1,1*. 

It is easy to verify that 

(6.11 ) 11'.1,a+f):!Clj·l,a l I I'f) .l90. 7 ;n"'" o.x;n 90. 7 ;n for (1+r~O. 

We now establish the basic Schauder interior estimates. 

Theorem 6.2. Let Q be an open suhset olIW, and let u E c 2 ,a(Q) be a bounded solu
tion in Q of the equation 

Lu = (lij D, ,u + bi D ,u + ('u = f' 
I) 1 . ~ 

where f E ca(Q) and there are positive constants A, A such that the coefficients satisfy 

(6.12) 

and 

(6.\3) 

Then 

(6.14) 

\I'here C= C(n, :x, i., A). 

Proof By virtue of(6.9) it suffices to prove the inequality (6.14) for [u]!. ~;n' and it 
suffices to prove the latter for compact subsets ofQ. Namely. let {Q i : be a sequence 
of open subsets of Q such that QicQi+ I c cQ and u Qi=Q. We have that 
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[u]L:Q, is finite for each i and if (6.14) holds in Qj' we may assert for any pair of 
points x. Y E Q. for all sufficiently large i. and for any second derivative D2u. 

Pi) 2 h ID 2u(x) - D2u( y)1 ~ []* ~ C I I 1/'1121 
(t.<.y) --Ix--l-'I~---'" u 2.a:Q,--- (UO:!l,+. o.o:n,) 

:;:; C(lul o: 0 + 11162.'" 0) 

where d!:)y=min [dist (x. oQj)' dist (y. oQj)]' Letting i -~ 00. we obtain the 
inequality 

which implies the same bound for [u]L:Q' We may therefore assume in the 
following that [u]L: Q is finite. 

For notational convenience the same letter C will be used to denote constants 
depending on n, IX, )., A. 

Let x O' Yo be any two distinct points in Q and suppose d"o = dxo . Yo = min (dxo' dy). 
Let Jl:;:;t be a positive constant to be specified later. and set d=Jldxo' B=Bd(.xO)' 

We rewrite Lu=fin the form 

( 6.15) 

and we consider this as an equation in B with constant coefficients di(xo)' Lemma 
6.1(a), applied to this equation. asserts that if Yo E Bd/ 2(X O)' then for any second 
derivative D2u 

and thus 

On the other hand, if Ixo - Yol :;:: d/2, 

so that, combining these two inequalities, we obtain 

(6.16) 
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We proceed to estimate IFI~~~;B in terms of lulo;.Q and [u]L;.Q' We have 

It will be useful in estimating these terms to have the following inequality. 
Recalling that for all x E B. dx( =dist (x. 0.0»> (1- Jl)dxo ;;': idxo' we have for 
9 E C"(.Q) 

2 2+« 

(6.18) Igl~~;B ~d2Iglo;B+d2+«[g]a;B ~ (1 ~ Jl.)2 [g]~)!l + (1 ~ Jl.)2+a [g]~~;!l 

:!:;;4Jl2[g]~)!l+8Jl.2+a[g]~~;!l ~ 8Jl.2Igl~)a;!l' 

Writing (a(xo)-a(x»D2u=(aii(xo)-aii(x»DijU for each pair i. j, we obtain 
from (6.11) and (6.IS) 

Since 

la(:<:o) -a(x)I~~)<I;B~ sup \a(xo) -a(x)\ +d<l[a]d~2d'[a]d 
xeB 

:!C2 1 +<1 IJ<I[,,] * :!C4A IJ <I 
......;: fA O.a;a........:::: ,..." 

we arrive at the following estimate for the principal term in (6.17), 

(6.19) 

The last inequality is obtained by setting e = Jl' in the interpolation inequality (6.S). 
Letting bDu=biDju for each i, we obtain from (6.IS) and (6.13) 

IbDul~~)<I; B ~ SJl2IbDul~~;.Q ~ SJl2Ibl~1.)2; .QIDul~1.)2;.Q 

~ SJl2 Aluli.a;.Q ~ SJl2 A( C(Jl)lulo; u+ Jl2'[u]L;.Q)' 

The last inequality is obtained by setting e=Jl21J in (6.9). Thus we have 

(6.20) 

Similarly, from (6.18), (6.11) and (6.9), we obtain 
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Finally, 

(6.22) Ifl(2) ~ 8 2Ifl(2) 
O,2;B'" Ji. O,2;n' 

Letting C denote constants depending only on n, IX, A, .1, and C(Ji.) constants 
depending also on Ji., we find after combining (6.19)-(6.22), 

Inserting this into the right member of(6.16), and using (6.8) with e=Ji.2Z to esti
mate [uJtn' we obtain from (6.16) 

The right member of this inequality is independent of xO' Yo' Taking the supremum 
over all xO' Yo E Q. we obtain 

We now choose and fix )1 = J-lo so that Cjl~:::; ~, Then we arrive at the desired 
estimate 

The preceding form of the interior estimates for Lu = f permits the coefficients 
andfto be unbounded subject to the condition (6.13). In typical applications of the 
interior estimates to convergence results, it suffices to know equicontinuity of 
solutions and their derivatives up to second order on compact subsets. For this 
purpose the following corollary is usually adequate, 

Corollary 6.3. Let u E C2 ,1l(Q), f E CIl(Q) satisfy Lu = f in a bounded domain 0 
where L satisfies (6.2) and its coefficients are in CIl(Q). Then if 0' ceO with 
dist (0', aO) ~ d, there is a constant C such that 

(6,23) 

where C depends only on the ellipticity constant A and the CIl(Q) norms of the coef
ficients of L (as well as on n, IX and the diameter of 0). 

Remark, An immediate consequence of this result is that uniformly bounded 
solutions of elliptic equations Lu = f with locally Holder continuous coefficients 
and locally Holder continuous fare equicontinuous with their first and second 
derivatives on compact subsets. This is true as well for the solutions of any family of 
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such equations with ellipticity constant ;. uniformly bounded away from zero in 
compact subsets Q' ceQ and with coefficients and inhomogeneous termfhaving 
uniformly bounded e(Q') norms. 

6.2. Boundary and Global Estimates 

To extend the preceding interior estimates to the entire domain it is necessary to 
have estimates that are meaningful near the boundary. These can be obtained 
provided the boundary values of the solution and the boundary itself are sufficiently 
smooth. In many respects the proof of these boundary estimates follows closely 
that of the interior estimates. 

The global estimates which are the principal goal of this section will be estab
lished in domains of class C 2 .7.. 

Definition. A bounded domain Q in 1R" and its boundary are of class C k .7.. 
O~ cx~ I. ifateach point Xo E oQthere isa ball B=B(xo)and a one-to-one mapping 
t/! of B onto Dc W such that: 

A domain Q will be said to have a boundary portion Te oQ of class C k.7. if at each 
point Xo E T there is a ball B= B(xo) in which the above conditions are satisfied 
and such that B n oQe T. We shall say that the diffeomorphism t/! stra(qhtens the 
boundary near xo' 

We note in particular that Q is a ct. 7. domain if each point of oQ has a neighbor
hood in which oQ is the graph of a CI<·7. function of n-I of the coordinates 
x \ •.... XII' The converse is also true if k ~ I. 

It follows from the above definition that a domain of class C k.7. is also of class 
Ci .P providedj+ P<k+cx. O:S;;cx. p:S;; I. 

A function qJ defined on a C k.7. boundary portion T of a domain Q will be said 
to be in class Ck. 7.( T) if qJ0t/! - 1 E Ck·7.(D n olR"+.) for each Xo E T. It is important to 
note that if oQ is in Ck·7.(k~ I). then a function qJ E C k·7.(oQ) can be extended to 
a function in C k.7.(.Q). and conversely. a function in C k·7.(D) has boundary values in 
C k·7.(oQ) (see Lemma 6.38). Hence. in what follows it is immaterial whether we 
consider boundary values qJ belonging to C k·7.(oQ) or C k.7.(.Q). 

It is also possible to define a boundary norm on C k·7.(oQ). in various ways. For 
example. if qJ E Ck. 7.( oQ) let tP denote an extension of cp to D and define II qJ II Ck. "(am = 
inf. II tPil Ck. "(a)' where the infimum is taken over the set of all global extensions tP. 
Equipped with this norm. C k·7.(o.Q) becomes a Banach space. In this work we shall 
not use boundary norms for functions on curved boundaries but instead we 
generally consider a boundary function as the restriction of a globally defined 
function with its appropriate norm. 

In obtaining boundary estimates for Lu=f in domains with a C 2 ,7.(cx>O) 
boundary portion we first establish such an estimate in domains with a hyperplane 
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boundary portion. For this purpose we use the following interpolation inequality, 
analogous to (6.8), (6.9). For its statement we recall the partially interior norms and 
seminorms defined in (4.29). 

Let 0 be an open subset of~: with a boundary portion Ton xn=O, and assume 
u E C 2 •3 (D u T). Thenfor any e>O and some constant C(e) we have 

(6.24) [u]j, (I;Uv T~ qulo;u+e[uH,a;uv T' 

}=O, 1. 2; O~IX, /J~ 1,}+/J<2+IX; 

These inequalities are proved in Lemma 6.34 of Appendix I to this chapter. 
We can now assert the following essential local boundary estimate. 

Lemma 6.4. Let 0 be an open subset of~:, with a boundary portion Ton xn = O. 
Suppose that u E C 2 •3 (D u T) is a bounded solution in 0 of Lu=f satisfying the 
boundary condition u=O on T. In addition to (6.2) it is assumed that 

Then 

(6.27) lult,;uv T~ c(lulo;u+lfl~~~;uv T) 

where C= C(n, IX, A., A). 

Proof The proof is identical with that of Theorem 6.2 ifin the latter dx is replaced 
by ax and Lemma 6.1 (a) and the inequalities (6.8), (6.9) are replaced when necessary 
by Lemma 6.1 (b) and the inequalities (6.24), (6.25). 0 

This lemma provides a bound on the first and second derivatives of u and 
the Holder coefficients of its second derivatives in any subset 0' c 0 for which 
dist (0', 00-1»0. In particular 00' may contain any portion of T at a non
zero distance from 00 - T. 

In order to extend the preceding lemma to domains with a curved boundary 
portion, we introduce the relevant seminorms and norms, in obvious generaliza
tion of (4.29). Let 0 be an open set in ~n with Ck.3 boundary portion T. For 
x, YEO we set 

ax = dist (x, 00- T), 
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and for functions u E Ck'~(Q u T) we define the following quantities: 

(6.28) 

[U]:,O;UvT=[U]:,UvT=SUP J;IDPu(x)l, k=O, 1,2, ... ; 
xeU 
IPI=k 

IDPu(x) -l)Pu(y)1 
[u]L;uv T= sup Jkh , O<(X~ 1; 

x,yeU x,y Ix-yl~ 
IPI=k 

k 

lul:,o;UvT=lul:;UvT= L [U]~UvT; 
j= 0 

lul:'~;uv T= lul:;u v T + [u]:,~;uv T; 

lul(k). = sup Jklu(x)l+ sup ak+.~ lu(x)-u(Y)I. 
O,~,UvT x x,y 1 I~ 

xeU x.yeD X-Y 

When T = <p and Q u T = Q, these quantities reduce to the interior seminorms and 
norms already defined in (4.17) and (4.18). 

Let Q be a bounded domain with C k , ~ boundary portion T, k ~ 1, 0 ~ (X ~ I. 
Suppose that Q c cD, where D is a domain that is mapped by a C b diffeomor
phism t/I onto D'. Letting t/I(Q) = Q' and t/I( T) = T, we can define the quantities in 
(6.28) with respect to Q' and T'. If x' = t/I(x), y' = t/I( y), one sees that 

(6.29) K-11x - yl ~Ix' - y'l ~ K1x - yl 

for all points x, Y E Q, where K is a constant depending on t/I and Q. Letting 
u(x) --> u(x') under the mapping x --> x', we find after a calculation using (6.29): for 
O~)~k, 0~f3~ 1,)+ f3~k + (x, 

(6.30) K-1Iu(x)lj,p;UuT ~ lu(x')Ij,p;a'uT' ~ Klu(x)lj,p;auT; 

K-1Iu(x)Ill.Jp;auT ~ I u(x') 1ll.)P;U·uT· ~ Klu(x)I~)p;auT' 

In these inequalities K denotes constants depending on the mapping t/I and the 
domain Q. 

Lemma 6.4 can now be applied together with (6.30) to obtain a local boundary 
estimate for curved boundaries. For this it is convenient to use the global norms 
(4.6). 

Lemma 6.5. Let Q be a C2.~ domain in IRn, and let u E C2'~(Q) be a solution of 
Lu=f in Q, u=O on aQ, where fE C~(Q). It is assumed that the coefficients of L 
satisfy (6.2) and 
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Thenfor some b there is a ball B= B~(xo) at each point Xo E aQ such that 

where C= C(n, ex, A. A, 0). 

Proof By the definition of a C 2 , ~ domain, at each point Xo E aQ there is a neigh
borhood N of Xo and a C2,~ diffeomorphism that straightens the boundary in N. 
Let Bp(xo)ccN and set B'=Bp(xo)nQ, D'=t/I(B'), T=Bp(xo)neQcaB' 
and T = t/I( T) c aD' (T is a hyperplane portion of aD '). Under the mapping 
y=t/I(X)=(I/Il(X)" .. , I/In(x», let u(y)=u(x) and la(y)=Lu(x). where 

and 

.. 01/1.01/1. 
aIJ(y)=_1 ~ ars(x), 

ax, ex, 

~. 02,1,. cl/l. 
bl(y) = __ '1'_1 ars(x) + _I b'(x), 

ox/x, ox, 

c( y) = c(x), J(y)=f(x). 

We observe that in D' 

where 

(6.33) l=A/K 

for a suitable positive constant K depending only on the r.lapping '" on B'. By virtue 
of (6.30) we have also (for appropriate choice of Kin (6.33» 

Thus the conditions of Lemma 6.4 are satisfied for the equation la = J in D' with 
the hyperplane portion T. We can therefore assert 

where the constant C= C(n, ex, J., A). It follows from (6.30) that 

lultd' vT~c(lulo,B' +Ifl~)d' vT) ~ c(lulo;B' +Iflo,d') 
~ c(lulo;u+ Iflo.~;u), 

where C now depends on n, ex, A, A and B', Letting B" = Bp/ 2(xo) n Q and observing 
that 
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we obtain 

The radius p appearing in the previous estimates depends in general on the 
point Xo e cD. Consider now the collection of balls Bp/4(x) for all x e oD. A finite 
subset Bp;/4(Xi ), i=I, ... ,N, of this collection covers oD. Let c5=minp;!4 be 
the minimum radius of the balls in this finite covering. We assert that for this c5 the 
conclusion ofthe lemma is true. Namely, let C i be the constant in (6.35) correspond
ing to xi' and let C=max Ci . Consider any point Xo e oD and the ball B/>(xo)' For 
some i we must have Xo e Bp;/ixi) and hence B=B/>(xo)cBp;/2(xi)=Bi . From 
(6.35) we obtain the desired conclusion 

where C depends on n, tX, A., A, and D. 0 

We remark that in the preceding lemma the dependence of the constant C on the 
domain D is through the constant K in (6.30), (6.33) and (6.34), and K in turn 
depends only on the C 2. ~ bounds on the mapping'" which defines the local represen
tation of the boundary oD. If the bounds on the mapping", can be stated uniformly 
over the boundary (which is always possible for C2.~ domains), then K can replace 
D in the statement of the estimate (6.32) and the domain D may also be unbounded. 

The principal result of this section is the following apriori global estimate for 
solutions with C2.~ boundary values defined on C2.~ domains. 

Theorem 6.6. Let D be a C2.~ domain in 1Jil" and let u e c2·~(n) be a solution of 
Lu=f in D, where fe e(D> and the coefficients of L satisfy,for positive constants 
A., A, 

and 

Let q>(x) e C2·~(n), and suppose u=q> on oD. Then 

(6.36) 

where C= C(n, tX, A., A, D). 

Proof It suffices to prove the theorem for the case u = 0 on cD and q> = O. Namely, 
if we set v = u - q>, then v = 0 on cD and Lv = f - Lq> =-f' e C~(n). The conclusion 
(6.36), applied to v with q>=O, asserts 
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as asserted in the theorem. In the remainder of the proof we assume u=O on cD. 
Let xED. We consider the two possibilities: (i) x E Bo = B2,,(xO) n D for some 

Xo E cD, where f>=2a is the radius in Lemma 6.5; (ii) x E D,,= {x E D I 
dist (x, DO) > al. In case (i) Lemma 6.5 implies that 

(6.37) IDu(x)1 + IDlu(x)l:S;; COuio + Iflo.a)· 

(Here and in the following we omit the subscript D without ambiguity.) In case (ii) 
we obtain the same inequality, with a different constant C, from Corollary 6.3 after 
setting d= a in (6.23). Choosing the larger of the two constants C, we may assume 
(6.37) for any point x in D, and hence for lull' 

N ow let x, y be distinct po in ts in D and considerthe three possi bilities : (i) x, y E B 0 

for some xo; (ii) x, y E D,,; (iii) x or y is in D - D" but not both x and y are in the 
same ball Bo for any xO' These exhaust all possibilities. We consider the Holder 
quotient ID2u(x)-Dl u(y)lIlx-yl"'. In case (i), Lemma 6.5 gives the inequality 

In case (ii) we obtain the same inequality, with a different constant Cl , from 
Corollary 6.3. In case (iii), dist (x, y»a, so that 

ID 2u(x)- DlU( r)1 
ix-YI'" . :S;;a-"'(IDlu(x)I+IDlu(y)l) 

:s;; C3 (/ul o + Iflo. a) by (6.37). 

Letting C=max (C l , Cl , C3 ), and taking the supremum over all x, YE D, we 
obtain 

Combining this result with the bound for lull given by (6.37), we get 

which establishes the theorem. 0 

Remark. The typical application of Theorem 6.6 concerns a set of solutions of an 
equation or family of equations, each solution satisfying a uniform estimate (6.36). 
The boundedness of the set of solutions in C l. :1m) then assures their precompactness 
in Cl(Q); (see Lemma 6.36). 
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A simple modification ofthe argument in Theorem 6.6 yields the following local 
estimate in domains with a C 2 ., boundary portion. 

Corollary 6.7. Let aelRn be a domain with a C 2 ., boundary portion Teea. Let 
u E c 2 ,'(a u T) be a solution of Lu=f in a, u=cp on T, where L andf satisfy the 
conditions of Theorem 6.6, and cp E C 2"(Q). Then, if Xo E T and B=Bp(xo) is a 
ball with radius p<dist (xo' aa- T), we have 

(6.38) 

where C = C(n, Ct, A., A, B n Q). 

It is a straightforward matter to extend the estimates of this and the preceding 
section to equations whose coefficients and inhomogeneous term are in C k." where 
k>O; (see Problems 6.1, 6.2). 

6.3. The Dirichlet Problem 

We consider the Dirichlet problem for Lu=fin a bounded domain Q of IRn. Our 
procedure for solving this variable coefficient equation is to reduce it to the case 
of constant coefficients by the method of continuity (Theorem 5.2). Briefly sum
marized, this method as applied here starts with the solution for Poisson's equation 
,1u = f and then arrives at a solution for Lu = f through solutions for a continuous 
family of equations connecting ,1u = f and Lu = f 

We treat first the Dirichlet problem for sufficiently smooth domains and 
boundary values. In this case the connection between the solvability of Poisson's 
equation and of Lu=fwhen c~O is contained in the following theorem. 

Theorem 6.S. Let a be a C 2., domain in IRn, and let the operator L be strictly 
elliptic in a with coejficienls in C'(Q) and with c ~ O. Then if the Dirichlet problem 
for Poisson's equation, ,1u=f in a, u=cp on ca, has a C 2 "(Q) solution for all 
f E C'(Q) and all cp E C 2. 'en), the problem, 

(6.39) Lu=fin a, u=cp on aa, 

also has a (unique) C 2"(Q) solutionfor all suchf and cpo 

Proof By hypothesis we may assume that the coefficients of L satisfy the 
conditions 

(6.40) 
Aw 2 ~aij~i~i "Ix E a, ~ E ~, 

Idilo.2 • Wl o." jclo.,~A. 
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with positive constants A, A. (In writing norms, we omit the subscript a, which will 
be implicitly understood.) It suffices to restrict consideration to zero boundary 
values, since the problem (6.39) is equivalent to Lv=f-LqJ=./' in a, v=O on aa. 

We consider the family of equations, 

(6.41) Lru=.tLu+(1-t),1u=j, O~t~l. 

We note that Lo=A, Ll =L, and that the coefficients of Lr satisfy (6.40) with 

Ar = min (1, A), Ar=max (1, A). 

The operator Lr may be considered a bounded linear operator from the Banach 
space ~1={UEC2·~(D)1 u=O on aa} into the Banach space ~2=C"(Q). The 
solvability of the Dirichlet problem, Lru = fin a, u = 0 on aa, for arbitrary f E C"( Q) 
is then equivalent to the invertibility of the mapping Lr• Let Ur denote a solution of 
this problem. By virtue of Theorem 3.7, we have the bound 

IUrlo~Csup Ifl~qflo,,,, 
a 

where C depends only on A, A and the diameter of a. Hence from (6.36), we have 

that is, 

the constant C being independent of t. Since, by hypothesis, Lo = A maps ~ 1 onto 
~2' the method of continuity (Theorem 5.2) is applicable and the theorem 
follows. 0 

The preceding theorem presupposes the solvability in C 2 '''(Q) of the Dirichlet 
problem for Poisson's equation when a and the boundary values are in class C 2 , ... 

Although this result-Kellogg's theorem-can be established independently by 
potential theoretic methods, we shall not assume it or prove it here, but rather 
derive it later as a consequence of elliptic theory. However, in the special case that 
a is a ball, Kellogg's theorem has already been proved, in Corollary 4.14. This 
provides the following existence theorem for balls. 

Corollary 6.9. In Theorem 6.8 let a be a ball B, and let the operator L satisfy the 
same conditions as in that theorem. Then iffE C"(B) and qJ E C 2 '''(B), the Dirichlet 
problem, Lu=fin B, U=qJ on aB, has a (unique) solution u E C 2 '''(B). 

The conditions on the boundary data can be weakened to give the following 
generalization, which will be useful later. 
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Lemma 6.10. Let T be a boundary portion (possib~v empty) of a ball B in R", and 
let qJ E CO(oB) n C 2·"(T). Then if L satisfies the conditions of Theorem 6.8 in Band 
fE C"(B), the Dirichlet problem, Lu=f in B, u=qJ on oB, has a (unique) solution 
u E C 2'''(B u T) n C°(i1). 

Proof Let Xo E Tif Tis non-empty. We can assume thatthe boundary function qJ 
is continued by radial extension to a function qJ E CO(B') n C 2 '''(G), where B' is a 
ball containing Band G = Bp(xo)c c B'; (see Remark 2 after Lemma 6.38). Let {qJk} 
be a sequence of sufficiently smooth (say C 3 ) functions in B' such that 

where C is a constant independent of k. (For the existence of such an approxima
tion see the discussion after Lemma 7.1.) For each k let u" be the corresponding 
solution of the Dirichlet problem, Lu=f in B, u=qJ" on oB. By Corollary 6.9 the 
functions Uk are known to exist in C 2. "( B). From the maximum principle it follows 
that the sequence {u,,} converges uniformly to a function u E CO(.8) such that U=qJ 
on oB. The compactness of {Uk} provided by Corollary 6.3 assures that this 
sequence converges to a solution of Lu = f on compact subsets of B and hence the 
limit function u is a solution in B lying in CO(B). Furthermore, by Corollary 6.7, in 
D= Bp/2(xO) n B the functions Uk satisfy the estimate 

It follows from (6.43) and Arzela's theorem that u satisfies such an estimate in D 
(with qJ replacing qJk) and in particular that u E C 2 • "(15). Thus u E C 2• "(B u T) and 
the lemma is proved. 0 

We note especially that the preceding lemma provides a solution of the Dirichlet 
problem in balls when the boundary values are only contin'uous; the solution is 
then in class CO(B) n C 2• II(B). 

It is now possible to imitate the Perron method of subharmonic functions of 
Chapter 2 and to extend the results obtained there for harmonic functions to the 
Dirichlet problem for Lu = f. A function u E COCa) will be called a subsolution 
(supersolution) of Lu = f in a if for every ball Bee a and every solution v 
such that Lv = fin S, the inequality u ~ v (u ~ v) on as implies also u ~ v (u ~ v) 
in B. If we suppose that L satisfies the strong maximum principle and that the 
Dirichlet problem for Lu = f is solvable in balls for continuous boundary values, 
then subsolutions and subharmonic functions are seen to share many of the same 
properties. In particular, we assert the following propositions without proof, the 
details being essentially the same as for subharmonic functions. When f and the 
coefficients of L are in e(a), with c ~ 0, we need only observe that in the proofs 
Theorem 3.5 and Lemma 6.10 replace Theorems 2.2 and 2.6, respectively. 
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(i) A function u E C 2(0) is a subsolution if and only if Lu ~ f 
(ii) If u is a subsolution in a bounded domain a and v is a supersolution such 

that v ~ u on aa, then either v> u throughout a or v == u. 
(iii) Let u be a subsolution in a and B a ball such that Bca. We denote by U 

the solution of Lu=fin B satisfying the condition u=u on aBo Then the function 
U defined by 

U(X)={U(X), x E B 
u(x), X E a-B 

is a subsolution in a. 
(iv) Let u1' u2 , •.. , UN be subsolutions in a, then the function u(x) = 

max {u1(x), u2(x), ... , uN(x)} is also a subsolution in a. 

In (i), (iii), and (iv) corresponding statements can obviously be made for 
supersolutions. 

Now let a be a bounded domain and cp a bounded function on aa. A function 
u E CO(D) will be called asubfunction (superfunction) relative to cp if u is a subsolution 
(supersolution) in a and u~cp (u~cp) on aa. By (ii) above every subfunction is less 
than or equal to every superfunction. We denote by S", the set of subfunctions in 
a relative to cpo Let us assume that S", is non-empty and is bounded from above. 
This is the case, for example, when L is strictly elliptic in a and its coefficients and 
fare bounded. Namely, if a lies in the slab O<x 1 <d, then the functions 

(6.44) 

are respectively superfunction and subfunction if the positive constant y is suffi
ciently large; (see Theorem 3.7). The superfunction v + provides an upper bound for 
the functions of S"" and the existence of the subfunction v - assures that S", is 
non-empty. 

We can now assert the basic existence result of the Perron process for Lu = f, 
assuming that f and the coefficients of L are in CIll(O) and that c ~ O. 

Theorem 6.11. The function u(x)= sup v(x) lies in C 2.1ll(0) and satisfies Lu=f 

in a provided u is bounded. 

The proof differs only in minor details from that of Theorem 2.12 and is left to 
the reader. We call attention to the fact that the compactness of solutions required 
in the proof is provided by the interior estimate of Corollary 6.3, and that the 
appropriate form of the maximum principle in the argument is given by Theorem 3.5. 
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We wish now to determine conditions that the solution defined in Theorem 6.11 
assumes the boundary values cp continuously. As in the case of harmonic functions, 
this problem can be treated by means of the barrier concept, which we define for 
Lu=/with c~O in a bounded domain D. Let cp be a bounded function on aD, 
continuous at Xo E aD. Then a sequence of functions {wt(x)} ({wj-(x)}) In 

Co(m is an upper (lower) barrier in 0 relative to L, t, and cp at X o if: 

(i) wt(w j-) is a super(sub)function relative to cp in 0; 
(ii) Wj±(xo) -+ cp(xo) as i -+ 00. 

If both an upper and lower barrier exist at a point, it will be convenient to speak 
simply of a barrier at the point. 

The basic property of barriers is contained in the following: 

Lemma 6.12. Let u be the solution 0/ Lu = / in 0 defined by Theorem 6.11, where 
cp is a bounded/unction on aD, continuous at xo./fthere exists a barrier at x o' then 
u(x) --+ cp(xo) as x --+ x o' 

Proof From the definition of u and the fact that every subfunction is dominated 
by every superfunction, we have for all i, 

For any I: > 0 and all sufficiently large i, condition (ii) above implies 

X-Xo X-Xo 

It follows that 

lim sup lu(x) - cp(xo)1 < 1:, 

]C- Xo 

and hence we conclude u(x) --+ cp(xo) as x --+ xo' 0 

We amplify on the barrier concept with the following remarks. 

Remark 1. In many cases of interest the special structure of the equation simplifies 
the determination of a barrier. Thus, if c=O, /=0 in the equation Lu=f, the 
situation is the same as for Laplace's equation in that a barrier at Xo is determined 
by a single supersolution WE CO(.Q) with the property that w>O on aD-xo, 
w(xo) = O. To see this, let I: > 0; then by the boundedness of cp and its continuity at 
x o' there is a positive constant k, such that 

are respectively superfunction and subfunction in Dwith respect to cp, and obviously 
w,±(xo) --+ cp(xo) as I: --+ O. Thus the family w,±(x) determines a barrier. 
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To consider another class of equations, letl and the coefficients of L be bounded 
in Q. Again a single function WE C°<'J) n C 2(Q) determines a barrier at X o if 
it satisfies the conditions: (a) Lw~ -I in Q; (b) w>O on oQ-xo' w(xo)=O. 
Namely, given £>0, then as above there is a positive constant k. such that 

If now we set k: = max (k£, sup 11- np(xo)!), the functions 
Q 

are respectively superfunction and subfunction and define a barrier at xo. In fact, 
w; ~cp, w£- ~cp on oQ, and since Lw~ -I, 

similarly, L[cp(xo)-£-k:w]~/, and hence the family w£± determines a barrier 
with respect to cp at xo. 

When, as in the above cases, a barrier at X o is constructed from a fixed super
solution w of Lu=O depending only on L and the domain, we shall say that w 
determines a barrier at xo. 

Remark 2. The above definition of barrier is often difficult to apply, since it 
requires the construction of global sub- and supersolutions defined over all of Q. It 
may then become necessary to find local barriers to achieve the desired results. To 
motivate the definition of this concept, let M+ (M-) be an upper (lower) bound for 
a solution in Q whose boundary behavior is being studied at a point Xo E t3Q. Then a 
sequence of functions {WjT (x)} ({ wj- (x)}) is a local upper (lower) barrier relative to 
L,f, cp and M+(M-) at Xo if there is an open neighborhood A' of Xo such that: 

(i) Wt(Wi-) is a super (sub) solution in A' n Q; 
(ii) wt ~cp (wi- ~cp) on A' n oQ; 

(iii) wt ~M+ (Wj- ~M -) on Q n oA'; 
(iv) w j± (xo) --> cp(xo) as i --> 00. 

(In particular, if QeA', the functions wi± define a barrier at X o in the previous 
global sense and condition (iii) can be omitted.) One sees immediately that if the 
solution u defined in Theorem 6.11 satisfies lui ~ M in Q, then Lemma 6.12 remains 
valid if there exists a local barrier at Xo with respect to the bounds ± M. Later in this 
work local barriers will play an important part in the study of boundary behavior of 
solutions. 

Remark 3. The same argument as in Lemma 6.12 shows that a barrier determines 
a modulus of continuity at the boundary for any solution assuming its boundary 
values continuously. Thus in the cases considered in Remark I, if u is a bounded 
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solution of Lu=fsuch that u(x) ---+ qJ(xo) as x ---+ x o' we have for any e>O and a 
suitable positive constant k. 

lu(x) - qJ(xo)1 ~ e + k.w(x) in a. 

If w determines a local barrier at X o the same inequality holds in a fixed neighbor
hood of X o (independent of e). 

For the equation Lu= f, as for Laplace's equation, the existence and con
struction of barriers is closely connected to the local properties of the boundary. To 
illustrate by an example of interest in later application, let L be strictly elliptic in a 
bounded domain a, with c ~ 0, and let .f and the coefficients of L be bounded. 
We suppose that a satisfies an exterior sphere condition at Xo E aa, so that B n Q = 
Xo for some ball B = BR(Y)' We show that the function 

(6.45) 

satisfies Lw~ - 1 in a for suitable positive constants r and a and hence (by 
Remark 1 above) w determines a barrier at xo' Taking y=O for convenience, we 
have from (6.40) and the fact that c~O, for x E a 

L(R-tl- r- tl ) ~ar-tl-4[ - (a+ 2)d j x ix j + r2(l"di + bixi )] 

~ar-tl-2[ -(a+2)A+(l"aii +bixi)]. 

Since a and the coefficients of L are bounded, the right member is negative and 
bounded away from zero provided a is sufficiently large. Hence, for suitably large 
r and a, Lw~ -1, as asserted. 

Thus, under the above assumptions on the equation Lu =f, a bounded domain 
a satisfying an exterior sphere condition at every point Xo E ca, (e.g. any C 2 

domain), has a barrier at every boundary point, and Lemma 6.12 is applicable 
whenever the prescribed boundary values are continuous. Combining this fact 
with Theorem 6.11, we are led to the following general existence theorem. 

lbeorem 6.13. Let L be strictly elliptic in a bounded domain a. with c~O. and let 
f and the coefficients of L be bounded and belong to C"(Q). Suppose that a satisfies an 
exterior sphere condition at every boundary point. Then. if qJ is continuous on aa, the 
Dirichlet problem, 

Lu=fin a, u=cp on ca, 

has a (unique) solution u E CO(!.h n C 2'''(Q). 

The preceding theorem can be extended to more general domains. In particular, 
under the same hypotheses on Land f, it can be proved for domains satisfying an 
exterior cone condition (see Problem 6.3). 
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If the hypotheses of this theorem are strengthened so that/and the coefficients 
of L are in C"(U), it can be shown that the domains for which the Dirichlet problem 
is solvable for continuous boundary values are precisely the same for both the 
Laplace operator and L (see Notes). 

We turn now to the question of global regularity of the above solutions when 
the boundary data are sufficiently smooth. We have seen that under the hypotheses 
of Theorem 6.8 the solution of the Dirichlet problem for Lu=/ lies in C 2 '''(Q) 
provided the same result (Kellogg's theorem) is true for Poisson's equation. We pro
ceed now to prove this regularity theorem directly from the results of this section. 

Theorem 6.14. Let L be strictly elliptic in a bounded domain D, with c~O, and 
let / and the coefficients 0/ L belong to C2(Q). Suppose that D is a C 2." domain 
and that cp E C 2'''(Q). Then the Dirichlet problem, 

LU=/in D, u=cp on cD, 

has a (unique) solution lying in C 2 ·,,(U). 

Proof Since the hypotheses of Theorem 6.13 are satisfied, let u be the corre
sponding solution of the Dirichlet problem. We know from Theorem 6.13 that 
u E cOca) n C 2'''(Q), so it remains only to show that at each point Xo E aD, we have 
UE C 2 '''(D n D), where D is some neighbourhood of xo' Since D isa C 2 '''domain, 
there is a neighborhood N of Xo that can be taken by a C 2.2 mappingy=';(x) with 
C 2 ." inverse into a neighborhood iii in such a way that ';(N n Q) contains the 
closure of a ball B, and a portion T of N n j1D containing X o is mapped by'; into a 
boundary portion f of B. Under this mapping the equation Lu(x) = /(x) transforms 
into an equation Lu( y) = J( y) defined in B. Because of the C 2." character of the 
mapping, we have cp -+ ip E C 2 ,2(B), and L and Jsatisfy the same hypotheses in 
B as Land / do in D; that is, L is strictly elliptic in B, with c ~ 0, and J and the 
coefficients of L are in C"(B); (see Lemma 6.5.). Consider then the solution v of the 
Dirichlet problem, Lv=J in B, v=u on oB. Since u=ip on f c cB, we have 
that U E CO(oB) n C 2 ,"(f) on oB. Hence, by uniqueness for the Dirichlet 
problem and by Lemma 6.10 it follows u=v E CO(B) n C 2 '''(B u f). Returning 
to D, let D' =';-I(B). We see that u E C 2'''(D' u T), and since Xo was arbitrary on 
aD, we conclude that u E C 2'''(Q). 0 

The preceding result can be extended to conditions of lower regularity of the 
coefficients, domain and boundary values (see Notes). 

If the operator L does not satisfy the condition c ~ 0, then, as is well known 
from simple examples, the Dirichlet problem for Lu = / no longer has a solution 
in general. However, it is still possible to assert a Fredholm alternative, which we 
formulate as follows. 

Theorem 6.15. Let L=aiiDjj+biDi+c be strictly elliptic with coefficients in 
C"(U) in a C 2 ,IJ domain D. Then either: (a) the homogeneous problem, Lu=O in 
D, u = 0 on aD, has only the trivial solution, in which case the inhomogeneous problem, 
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Lu=fin 0., u=cp in aQ, has a unique C2'~(Q) solutionfor allfE C~(.Q), cp E C2'~m); 
or (b) the homogeneous problem has nontrivial solutions, which form a finite 
dimensional subspace of C 2.<I(Q). 

Proof We have seen that under the stated assumptions concerningfand cp, the 
inhomogeneous problem, Lu = fin 0., u = cp on aQ, is equivalent to the problem 
Lv=f-Lcp, v=O on aQ. We shall therefore consider the Dirichlet problem with 
only the homogeneous boundary condition, u = 0 on aQ, and it will suffice to 
restrict the operator L to the linear space 

Let a be any constant such that a ~ sup c, and define the operator La == L - a. 
n 

Then, by Theorem 6.14, the mapping 

is invertible. Furthermore, the inverse mapping L; I, by the estimate (6.36) and 
Theorem 3.7, is a compact mapping from C~(Q) into C 2(Q) and hence is also 
compact as a mapping from C~(Q) into C~(Q). Consider then the equation 

(6.46) 

in which L; I : C~(.Q) ---+ e(Q) is compact. By Theorem 5.3 on compact operators in 
a Banach space, the alternative applies and (6.46) always has a solution u E C~(.Q) 
provided the homogeneous equation u +aL; lU=O has only the trivial solution 
u=O. When this condition is not satisfied, the null space of the operator l+aL; 1 

(J=identity) is a finite dimensional subspace of e(Q) (Theorem 5.5). 
To interpret these statements in terms of the Dirichlet problem for Lu=/. 

we observe first that since L; I maps C~(Q) onto ~, any solution u E C~(Q) of 
(6.46) must also belong to ~. Hence, operating on (6.46) with La we obtain 

(6.47) 

Thus, the solutions of (6.46) are in one-to-one correspondence with the solutions of 
the boundary value problem (6.47), and we can therefore conclude the alternative 
stated in the theorem. 0 

The importance of the alternative for the Dirichlet problem is that it shows 
uniqueness to be a sufficient condition for existence. We remark that by virtue of 
Lemma 6.18 (to be proved in the next section), the C 2(Q) solutions of Lu=fare 
also in C2'~(Q), and hence the null space of Lin C 2(Q) is also finite dimensional. 
We note also that Theorem 5.5 implies that the set l: of real values a for which the 
homogeneous problem, Lu-au=O, u=O on aQ, has nontrivial solutions is 
at most countable and discrete. Furthermore (by Theorem 5.3), if a ¢ l:, any 
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solution of the Dirichlet problem Lau = fin D, u = cp on aD, satisfies an estimate 

lul2. ~:o:;; C(lcpI2.~ + Iflo.~) 
where the constant C is independent ofu,fand cpo 

6.4. Interior and Boundary Regularity 

In the preceding sections the inhomogeneous termfand the coefficients of L were 
assumed to be C~ functions and the corresponding solutions of the equation Lu = f 
were in class C2.~. We now investigate the higher regularity properties of the 
solutions in their dependence on the smoothness off and the coefficients of L. The 
global regularity of the solutions will depend as well on the smoothness of the 
boundary and the boundary values. 

First we show that any C 2 solution of Lu=fmust also be in class C2.~ if/and 
the coefficients of L are in C~. 

Lemma 6.16. Let u be a C 2(Q) solution of the equation Lu=f in an open set D, 
where f and the coefficients of the elliptic operator L are in C~(Q). Then u E C 2. ~(Q). 

Proof It obviously suffices to prove u E C2'~(B) for arbitrary balls Be cD. Let 
B be such a ball and in B consider the Dirichlet problem for v: 

Since, by hypothesis, u E C 2(B), we have that f' and the coefficients of Lo are in 
C(B). Hence, by Lemma 6.10, there isa solution v of(6.48) lying in C 2 •a(B) n CO(B). 
By uniqueness we infer that the solutions u and v of (6.48) are identical in Band 
thusuEC2·~(B). 0 

We note that the preceding result and those that follow in this section make no 
assumption concerning the sign of the coefficient c. 

The above lemma and the Schauder interior estimates yield the following 
interior regularity theorem. 

Theorem 6.17. Let u be a C 2(Q) solution of the equation Lu=fin an open set D, 
wherefandthe coefficients of the elliptic operator Lare in Ck'~(Q). Thenu E Ck+ 2'~(Q). 
Iff and the coefficients of L lie in C<Xl(Q), then u E C<Xl(Q). 

Proof By Lemma 6.16 the theorem is established for k = O. We now prove it for 
k = 1. Let v be a function on D and denote by e 1 (/ = 1, ... , n) the unit coordinate 
vector in the Xl direction. We define the difference quotient of vat X in the direction 
elby 

h h v(x+hel)-v(x) 
L1 v(x)=L1 l v(x)= . 

h 
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Taking the difference quotients of both sides of the equation 

Lu = d j D, ,u + bi D,u + cu =/ 
IJ I 

we obtain 

(6.49) L(Llhu) = djDijLlhu + biDiLlhu+ cLlhu= Fh(x) 

== LI,,/ - (Llhaij)Diju - (Llhbi )Diu - (Llhc)u. u = u(x + he,). 

All the difference quotients in this equation are assumed taken at xED in the 
direction e, for some 1= I •... , n. Since/E CI."(D) and 

I I d I 

LI,,/(x) = h f d/(x + the,) dt = f D,/(x + the,) dt. 
o 0 

one sees that LI~fE C"(D') in any subset D' c cD for which Ihl <dist (D'. cD). In 
particular. if Band B' are balls in D such that B' c Bee D and dist (B'. a B) = ho > O. 
thenLl'} E CII(.B')forO < Ihl < ho,and thereisa uniform bound: Ill'} 10,II;B' ~ const 
independent of h. Similar bounds hold for the difference quotients LlVj. Llhbi• LlhC• 

which also belong to C"(B'). Since u E C 2'''(D) (by Lemma 6.16). it follows that 
Fh E C"(B') for Ihl <ho and, furthermore, IFhlo.";B' ~const independent of h. 
Observing also the bound. sup ILlhul ~ sup IDul, we can infer from the interior 

B' B 

estimates of Corollary 6.3 that the set of functions Llhu and their first and second 
derivatives DjLlhu, DijLlhu, (i,j= I, ... , n), are bounded and equicontinuous on 
any ball B" c c B', and hence every sequence in these sets contains a uniformly 
convergent subsequence on B". Since Ll7u -+ D,u as h -+ 0, we may therefore asse'rt 
that DijLl~u -+ Djj,u as h -+ 0 and that u E C 3·"(B"). Since B" could be an arbitrary 
ball having its closure in D, we infer that u E C 3 ·,,(U). thereby proving the theorem 
fork=l. 

To prove the theorem for k > I, we proceed by induction on k. Under the stated 
hypotheses on Land / we may accordingly assume that u E Ck+ 1. "(D), and we 
wish to show that u E Ck+ 2. "(D). Since/and the coefficients of L are in Ck'''(D), 
the equation Lu = / may be differentiated k - I times. and this yields an equation 
Lu = J, where u = [)Pu for some index p such that IPI = k - I, and where J equals 
[)P/ plus a sum of terms which are products of derivatives of the coefficients of 
order ~k-I and of derivatives of u of order~k. ThusJE C1'''(D). By the same 
argument as above for k= I, we see that u E C 3 '''(D) and hence u E Ck+2'''(D), as 
claimed in the theorem. The final assertion concerning solutions in Coo(D) follows 
immediately. 0 

It is also the case that if/and the coefficients of L are real analytic functions, 
then any solution of Lu=/ is likewise analytic. For the proof we refer to the 
literature (e.g. [HO 3]). 

To be able to assert analogous regularity properties up to the boundary, it is 
obviously necessary that the boundary itself and the boundary values of the 
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solution be sufficiently smooth. To establish the appropriate results on regularity 
up to the boundary we first prove an analogue of Lemma 6.16. 

Lemma 6. 18. Let DbeadomainwithaC2'~boundaryportion T.andletcp E C2·~(O). 
Suppose that u is a CO(O) f"I C 2(Q) function satisfying Lu=f in D. u=cp on T, 
where f and the coefficients of the strictly elliptic operator L belong to C~(O). Then 
U E C2'~(D u T). 

Proof Since T is a C2.~ portion of aD, it is possible to find at each point Xo of 
T a boundary neighborhood T' c c T and a C 2.:t domain D in D such that Xo E 

T' c aD. In addition. D can be chosen so small that Corollary 3.8 is applicable 
and hence the Dirichlet problem for Lu = f in D has at most one solution in 
C°(l5) f"I C 2(D). 

The argument is now very similar to that in Lemma 6.10. Since u E 

Co(aD) f"I C 2.1J(T'). we can extend the boundary values of u on aD to a function 
v E CO(D') f"I C 2. IJ(B). where Dc cD' and B= Bp(xo)c cD'. (See Remark I after 
Lemma 6.38 for the construction of v.) Let {vkl be a sequence of functions in 
C 3(D') such that 

By virtue of the Fredholm alternative (Theorem 6.15). the Dirichlet problem. 
Lu=fin D, U=Vk on cD. has a unique solution Uk in C2'~(D) for each k. As a 
consequence of Corollaries 6.3 and 3.8, the sequence {Uk} converges to the solution 
u in D; and by Corollary 6.7 we have U E C 2·:t(B' f"I D). where B' = Bp/2(x O)' Since 
Xo was an arbitrary point on T, it follows that u E C2'~(D u T). 0 

If c ~ O. the preceding result is essentially contained in the proof of Theorem 6.14. 
However. when there are no restrictions on the sign of the coefficient c, the argu
ment in Theorem 6.14 has to be suitably modified. as in the above proof. Another 
proof, along different lines, is contained in the Notes. 

Lemma 6.18 remains valid if C 2.:t is replaced by Cl,:t in the hypotheses and 
conclusion, and under more general circumstances as well (see [GH]). 

With Lemma 6.18 as a starting point we can establish the following global 
regularity theorem. 

Theorem 6.19. Let D be a C H2.:t domain (k~O) and let cp E C k+ 2 ·:t(O). Suppose 
that u is a CO(O) f"I C 2(Q) function satisfying Lu = fin D, u = cp on aD, where f and 
the coe.!ficients of the strictly elliptic operator Lbelong to Ck.:t(O). Thenu E CH 2.il(0). 

Proof For k = 0 the theorem is implied by Lemma 6.18. We now prove the result 
for k = I. Let Xo be an arbitrary boundary point of D, and consider a suitable 
C 3 • 2 diffeomorphism'" that straightens the boundary near xo' As a consequence of 
this mapping we may consider the equation Lu=fas defined in a domain G with 
a hyperplane portion Ton xn = 0, while the remaining hypotheses of the theorem 
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are unchanged (see p. 91 ). By considering the function u - cp in place of u and noting 
that Lcp E Cl'~(G), we may assume that cp=O in the statement of the theorem. 

As in Theorem 6.17, we take the difference quotient of the equation Lu = fin 
the direction e, for any 1 = I, ... , n - I, obtaining thereby an equation of the form 
(6.49), which is satisfied by the difference quotient A"u (= A~u). IfO<lhl <ho' then 
this equation is valid in the set G'={xEGldist(x,cG-7»ho},which has a 
hyperplane boundary portion T' c T. Under the assumptions on L and/, and since 
u=O on T and u E C2'~(G), the conditions of Lemma 6.4 are satisfied in G' by 
equation (6.49) and the solution Ahu. It follows from Lemma 6.4 that the function 
families A"u, Di Ahu, Dij Ahu, (i,j= I, ... , n), are bounded and equicontinuous on 
compactsubsetsofG' u T'. SinceA~u -+ D,u ash -+ 0, wecanassertthatDij A~u-+ 
Dijlu for i, j= I, ., ., nand 1= 1, ... , n-I, and. in addition. DIU E C2'~(G' u T') 
for 1= I ..... n-I. It remains only to show that D.u E C 2 '«(G' U T') as well. 
This follows at once by writing 

D""u=( I/a·")(f- (L-a""D •• )u) 

and observing from the preceding results that the right hand side is contained in 
Cl'~(G' u T'). Sincexo was an arbitrary point on ca, we conclude that u E c3·~(m. 

The proof of the theorem for k > I proceeds by induction on k, as in Theorem 
6.17, by considering the equation satisfied by any derivative of order k - I and 
thereby reducing to the case k = I treated above. 0 

It is clear from the preceding argument, which is essentially local, that the 
regularity result remains true up to any CH2 ,« boundary portion Tprovided the 
solution u is continuous up to T and takes on C H 2.01 boundary values on T. 

6.5. An Alternative Approach 

An examination of the proof of Theorem 6.13 shows that this existence theorem 
follows by the Perron process from the solvability of the Dirichlet problem in balls 
for arbitrary continuous boundary values. The latter result (contained in Lemma 
6.10) depended in an essential way for its proof on the boundary estimates of the 
Schauder theory. However, as we shall see below. it is possible to develop a theory 
of the Dirichlet problent for continuous boundary values that is based entirely on 
the Schauder interior estimates, without any use of boundary estimates. 

The developments of this section will rest on the following extension of the 
interior estimates in Theorem 6.2. For its statement we make use of the seminorms 
and norms defined in (6.10). 

Lemma 6.20. Let u E C 2 • ~(Q) satisfy the equation Lu = f in an open set a of ~., 
where the coefficients of L sati:.fy (6.12) and (6.13). Suppose that lul~~g' < 00 and 
I f I~;$ < 00 for some fJ E ~. Then we have 

(6.50) lul(-P' ~ C(lul(-P' +lfl(2- p,) 
2.«;U....., o;u O.OI;U . 

where C = C(n, IX, A., A, fJ). 
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Proof Let x be any point in D, d" its distance from aD and d=dJ2. Then by 
(6.14), applied to the ball B=Bix), we have 

d 1 - III Du(x)1 + d 2 - /lID 2u(x)1 ~ Cd-IlGulo; B+ I/I~~)II; B) 

~ cfsup d;/llu(y)1 + sup d; -III/( y)1 
lyeB yeB 

+su d2+~-(J IfiX)-/(Y)I] 
ye~ x,y Ix- YI~ 

~ c(lul~~g)+I/I~~;~). 

Hence 

(6.51) I I(-(J)""'C(I 1(-11) 1/1(2- 11) u 2;0:::::: U 0; 0+ 0,11;0' 

To estimate [u]~~:)o, let x, Y be distinct points in D, with dx~dy and B=Bix) 
as above. Then, by considering the two cases Ix - yl ~ d/2 and Ix - yj > d/2, we 
have for any second derivative D 2U. 

d2+1I_/lID2U(X)- D2u( y)1 ~ Cd-II(lul . +1/1(2). ) 
x,y Ix- ylll O,B O,II,B 

d 2 +3-11 (ID2u(x)1 + ID2u( y)1> 
+ x (~2r 

~ c(lul~~g) + I/I~~~;~) + 8[u]~~g). 

Taking the supremum with respect to x. y. and applying (6.51), we obtain 

Combining this with (6.51), we get the desired estimate (6.50). 0 

We observe that for /3=0 the preceding result reduces to the previous estimate 
(6.14). When /3>0, the hypothesis that lul~~g) is finite obviously requires that 
u=o on oD. 

In this section we shall solve the Dirichlet problem for Lu =1 in balls using the 
method of continuity. This will require an apriori estimate of solutions for suitably 
unboundedj; given by the following lemma. The corresponding result for Poisson's 
equation is contained in Theorem 4.9. 

Lemma 6.21. Let L be strictly elliptic (satisfying (6.2». with c~O and with coeffi
cientsboundedin magnitude by A ina ball B= BR(xO)' Supposethatu E COOJ) n C 2(B) 
is a solution 01 Lu =1 in B. u = 0 on 0 B. Then,for any /3 E (0, 1) we have 

(6.52) sup d;lIlu(x)1 ~C sup d; - 1I1/(x)l, 
xeB xeB 

where C= C(/3. n, R, A, A). 
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Proof Let {J be fixed and assume that supd;-/llf(x)I=N<oo. The required 
xeB 

estimate (6.52) will be obtained by the construction of a suitable comparison 
function bounding u. For convenience we take Xo = 0, and let us set 

Then 

Lwl(x) = {J(R 2 - r2)/l-2[4({J-I )djxixj - 2(R 2 - r2)(Eaii +bixi ) 

+ (cl{J)(R 2 _ r2)2] 

~ - {J(R 2 - r2)P- 2[4(1- {J)Ar2 + 2(R 2 - r2)(nA -In Ar)]. 

It is clear that for some Ro' 0 ~ Ro < R, the expression in brackets is positive if 
Ro~r~R. Hence 

LWI(x)~ -cl(R-r)/l-2 in Ro~r<R, 

~c2(R-r)/l-2 in O~r<Ro' 

where C I and c2 are positive constants depending only on {J, n, R, A, and A. (If Ro = 0, 
the second inequality is of course superflous.) 

Now let w2(x)=eIlR -ellJC " where (X~ I +sup IbIIA. Then, as in Theorem 3.7, 
B 

we have LW2(X)~ -..t e-:zR in B, and hence 

LW2(X)~ -c3(R-r)/l-2 in O~r< Ro. 

~O in Ro~r<R, 

where c3 =A e- 2R(R_ RO)2 -fl. Since, by assumption, If(x)1 ~ Nd!-2 and d,,= R-r. 
it follows that for the positive constants YI = lie I and Y2 = (l + c21cI )/e3 , 

Letting w=Y I WI +Y2W2' one sees that w(x)~O on oB, w(x)=O at x=(R, 0, ... ,0), 
and 

L(Nw±u)~O in B, Nw±u~O on oB. 

From the maximum principle (Corollary 3.2) we infer 

(6.53) lu(x)I~Nw(x) in B. 

Consider now any point x E B, which we assume without loss of generality to 
lie on the x I axis. Then (6.53) implies the inequality 

lu(x)1 ~ CN(R-d =CNd! 

for some constant C = C({J, n, R, ..t, A), and the lemma is proved. 0 



6.5. An Alternative Approach 115 

The preceding result can be extended by similar methods to more general 
domains, for example, to C 2 domains (see Problem 6.5). 

With the help of the preceding two lemmas we can now prove the following 
extension of Theorem 4.9 to the equation Lu=f We observe that the proof makes 
no use of boundary estimates. 

Theorem 6.22. Let B be a ball in [Rn andf afunction in C"'(B) such that Ifl~~;;~ < OC; 

for some f3 E (0, I). Assume L to be strictly elliptic in B, with c::::; 0 and coefficients 
satisfying (6.2) and(6.31). Then there exists a (unique) solution u E CO(B) n C 2 ''''(B) 
of the Dirichlet problem, Lu = fin B, u = 0 on vB. In addition, lul~~~) < 00 and hence 
u satisfies the estimate (6.50) in B. 

Proof The argument is based on the method of continuity. As in Theorem 6.8, 
we consider the family of equations, 

Lru == t Lu + (l - 1) ,1 u = f, 0 ::::; t::::; I, 

and observe that the coefficients of Lr also satisfy (6.2) and (6.31) in B, with 
)'r=min (I, A), Ar=max (I, A) replacing A and A respectively. By virtueof(6.11) we 
have 

Idi D .. UI(2 -P) Ihi D.u1 12 - p) Icul(2 - (I)",:::: Clull-/l) 
I) O.a: ~ I O.a' 0.(1 ""'" 2.a: ' 

and hence the operator L r• for each t, is a bounded linear operator from the Banach 
space 

into the Banach space 

The solvability of the Dirichlet problem, Lru = fin B, u = 0 on vB, for arbitrary 
IE '!3 2 is equivalent to the invertibility of the mapping '!3 1 ----> '!32 defined by u ----> Lru. 
Let ur denote a solution of this problem for some t E [0, I]. Then from (6.52) we have 

It follows from (6.50) that 

lu I( - P)",:::: Clf·I(2 - P) 
r 2, .. -..:: 0, '" ' 

or, equivalently, 
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the constant C being independent of t. The fact that L o is onto is already contained 
in Theorem 4.9. The method of continuity (Theorem 5.2) is now applicable and 
the theorem is proved. 0 

The preceding theorem can be extended to yield the following generalization 
of Lemma 6.10 for the case of continuous boundary values. 

Corollary 6.23. Under the hypotheses of Theorem 6.22, if cP E CO(B) there exists 
a (unique) solution u E CO(B) n C 2·:J.(B) of the Dirichlet problem, Lu=fin B, U=cP 
on cB. 

Proof Let {CPk} be a sequence of functions in C 3(B) converging uniformly to 
cP on B. By Theorem 6.22, the Dirichlet problem, LVk = f - LCPk in B, vk = 0 on 
c B, is uniquely solvable for each k, and defines a solution Uk = vk + CPk of the 
corresponding problem with inhomogeneous boundary values, LUk = f in B, 
Uk = CPk on aBo It follows in the usual way from the maximum principle that Uk 
converges uniformly on B to a function U E CO(B) such that U=cP on aBo From the 
compactness provided by the interior estimates (Corollary 6.3), it follows also that 
Lu=fin B, and hence u is the required solution. 0 

Starting with this existence theorem in balls, we can proceed as before to apply 
the Perron process in more general domains, obtaining in particular Theorem 6.13. 

6.6. Non-Uniformly Elliptic Equations 

The existence results of the preceding sections, which were valid in arbitrary smooth 
bounded domains, were derived under the assumption of uniform ellipticity of the 
differential operator L. When the equation ceases to be uniformly elliptic, the 
conditions for solvability are greatly circumscribed and will in general require 
limitations on the geometry of the domain or connections between the differential 
operator and the geometry. 

It is instructive to consider an example for which the Dirichlet problem is not 
solvable. Let us consider solutions u(x, y) of the equation 

(6.54) 

in the rectangle R, O<x<1t, O<y<Y, such that uEC°(1~)nC2(R) satisfies 
the boundary conditions u(O, y)=u(1t, y)=O, O~y~ Y. Any such solution u(x, y) 

has a Fourier series expansion Ej~( y) sin nx, in which the coefficients fn( y) satisfy 
the ordinary differential equation yZfn" - nZfn = O. This equation has the independent 

solutions yil., y;o., where Pn =!(1 + J I +4n2 ) > O. ;'n =!(1 - J1+4n 2 ) < O. The 
fact that u(x, y) is bounded at y=O requires that fnCr)=constyil., and hence 
fn(O) = O. It follows that u(x, 0) = 0, and accordingly the only continuous solutions 
on R. satisfying the prescribed boundary conditions must have zero boundary 
values on y = 0 and therefore cannot take on prescribed non-zero boundary data. 
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The arguments leading to Theorem 6.13 can be extended to non-uniformly 
elliptic equations under suitable hypotheses on the coefficients and the domain. 
We observe to begin with that if/and the coefficients of L in the equation Lu=/ 
(c~o) are locally Holder continuous in the domain 0, and if the set of sub functions 
of the Dirichlet problem with respect to the prescribed boundary function qJ 
is non-empty and bounded above, then the Perron process defines a bounded solu
tion of Lu = / in 0 (Theorem 6.11). In particular, this is the case if Ibl/ A., // A. and 
the domain 0 are bounded, where A.(x) is the minimum eigenvalue of the coefficient 
matrix A(x) = [di(x)]; (see Theorem 3.7). This assumption will be understood in 
the following considerations. 

To study whether u(x) -+ qJ(xo) at a specific boundary point Xo E ao where cp is 
continuous, let us suppose, as in the discussion preceding Theorem 6.13, that 0 
satisfies an exterior sphere condition at xo' and let B= BR( y) be a ball such that 
B n Q = xo' While no longer assuming that L is uniformly elliptic near xo' we 
make the additional (but less restrictive) hypothesis that IA(x)· (x - y)1 ~ () > ° 
for all x in the intersection N n 0 of 0 with some neighborhood N of xo' (In par
ticular, if the coefficient matrix A(x) is continuous at xo' this condition will be 
satisfied if A(xo)' (xo - Y) :F 0; that is, if the normal vector to ao is not in the 
null space of A at xo.) It then follows that aii(xi - Yi)(X i - Y) ~ Xix - yI 2 for 
all x E N n 0, where A.' is a suitable positive constant, although the minimum 
eigenvalue A. may tend to zero at xo' Let us assume also that all coefficients of L are 
bounded. The barrier argument preceding Theorem 6.13 now proceeds as before 
and we conclude that the function w(x) = !(R- a - r- a) defined in (6.45) deter
mines a local barrier at Xo for appropriate choices of ! and u, and hence 
u(x) -+ qJ(xo)' We note that in the boundary value problem considered for equa
tion (6.54), the normal vector at each point of the boundary segment, y=O, ° < x < 1[, is in the null-space of the coefficient matrix [1,0/0,0], and thus the above 
hypothesis is not fulfilled. 

Alternatively, let [aii(x)] be an arbitrary positive matrix and assume that the 
functions Ibl/A., c/A.J/A., are bounded. By dividing by the minimum eigenvalue). we 
may assume without loss of generality that the operator L is strictly elliptic in' 0 
with A. = 1. The limit behaviour u(x) -+ qJ(xo) is now guaranteed if 0 satisfies a 
strict exterior plane condition at xo' By this we shall mean that in some neighborhood 
of Xo there is a hyperplane intersecting Q in the single point Xo' Such a condition 
will be satisfied, for example, if cO is strictly convex near xo' To prove the assertion 
u(x) -+ qJ(xo), let us for convenience choose Xo to be the origin and let the normal 
to the assumed exterior plane at Xo be the x 1 axis, with Xl> ° in 0 near xo' Under 
the stated conditions there is a slab ° < Xl < d whose intersection D with 0 near 
Xo is such that Xl> ° on jj - xo' As in the proof of Theorem 3.7 we see that the 
function 

w(x) = eyd(l - e- rX ') 

satisfies Lw~ -). in D provided y~ I +sup (lbIP.), and hence Lw~ -1 if we 
D 

take A. = 1. It follows as in Remark 1 following Lemma 6.12 that for a suitable 
constant k = k(E), the functions 
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determine a local barrier at X o with respect to the upper and lower bounds on u in a. 
We observe that if the boundary function cp is constant near xo' then u(x) -+ cp(xo) 

follows even if a satisfies a non-strict exterior plane condition at x o' In this connec
tion one notes that in the boundary value problem considered previously for (6.54), 
the boundary segment, y=O, O<x<1t, is convex but not strictly convex, and the 
stated boundary value problem is solvable only for zero data on the interval. 

The preceding remarks immediately yield the following simple extension of 
Theorem 6.13 to non-uniformly elliptic equations. 

Theorem 6.24. Let L be strictly elliptic (satisfying (6.2» in a bounded domain a. 
with c~O, aii, N, c. f E C"(D). and assume bi , c, f tJre bounded. Suppose that a 
satisfies the exterior sphere condition and. in addition, a strict exterior plane condition 
at those boundary points where any of the coefficients aii are unbounded. Then, if cp 
is continuous on aa, the Dirichlet problem. Lu = f in a, u = cp on ca, has a (unique) 
solution u E CO(O) n C2'~D). 

It is clear from the above arguments that this result can be modified in various 
ways (see. for example, Problem 6.4). When the equation is homogeneous and 
the lower order terms of L are not present. we obtain the following: 

Corollary 6.24'. Let the coefficients aij of the elliptic equation diDiju = 0 belong 
to C"(D), where a is a bounded strictly convex domain. Then the Dirichlet problem 
is solvable in Co(O) n C 2 .1Z(Q)for arbitrary continuous boundary values. 

Although this result is an immediate consequence of Theorem 6.24 its proof can 
be obtained more directly by observing that because of the strict convexity of a and 
the special form of the equation, a linear function determines a barrier at each 
boundary point. 

A closer examination of the relation between the coefficients of L and the local 
curvature properties of the boundary makes it possible to derive other general 
sufficient conditions for the existence of barriers. Let f and the coefficients of L 
(with c~O) be bounded and assume a is a C 2 domain. The minimum eigenvalue 
ofthe principal coefficient matrix [aii(x)] may approach zero on aa. We shall seek 
conditions for the existence of a local barrier at Xo E aa with respect to the con
tinuous boundary function cp and the bound M. 

Let B denote a ball centered at Xo and set G = B n a; B will be specified later. 
Let t/I E C 2(G) be a fixed function such that t/I(x»O on G-xo and t/I(xo) =0. 
For every e>O and a suitable constant k=k(e), we can satisfy the inequalities 

e + kt/l(x) ~ I cp{x) - cp{xo) I on aa n B, 

~M on aB n a. 

Let us now define the distance function (see Appendix to Chapter 14). 

d(x)=dist (x, aD), x E a, 
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which is in class C 2 in some neighborhood 

It can be assumed that G c .K. We propose to find conditions under which functions 
w±(x) of the form 

define a barrier at Xo in G, where K = K(e) is an appropriate positive constant. This 
will be the case if Lw+ ~fand Lw-:;?; fin G. Thus, the functions w± define a barrier 
if the inequality 

(6.55) 

holds in G for some K. This provides a sufficient condition for the existence of a 
barrier which. in principle. can be verified by inspection of the given equation and 
domain. 

To realize the condition (6.55) more concretely. let us, for example. assume the 
coefficients aij(x) to be continuous at xo. Choose a coordinate system with origip 
at Xo and the xn axis coincident with the inner normal Dd at xO. A rotation P of the 
coordinate system about the Xn axis, in which the new axes are the principal direc
tions of CU at xo. diagonalizes the Hessian matrix [Dijd(xo)]' so that 

where "I' "2.· .. ' "n-I are the principal curvatures of au with respect to the 
inner normal at Xo; (see Appendix to Chapter 14). If al' a2 •...• an denote the 
corresponding diagonal elements of the matrix P'[aii(xo)]P, we see that 

n-I 

(6.56) (aijDi/)x=xo= - L ai"i· 
i= I 

Hence. if 

n-I 

(6.57) L ai"i> sup IhI 
i=1 a 

it follows by continuity that the inequality (6.55) is satisfied in G = B n U for 
some ball B about xO' provided K is chosen large enough. If in addition, the 
coefficients bi are continuous at xO' and if bv denotes the normal component of the 
vector b(xo) = (bl(xO)' ••• , ~(xo» with respectto the innernormal. condition (6.55) 
is satisfied in a suitable G provided 

(6.58) 
n-I 

L ai"i-bV>O. 
i=1 
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Under the stated hypotheses, (6.57) and (6.58) are therefore sufficient conditions 
for the existence of a local barrier at xO. If b(xo) =0, (6.58) reduces to the simple 
condition, 

,,= 1 

L aiKi>O, 
i= 1 

which involves only the leading coefficients and the principal curvatures and 
directions of the boundary. It is not difficult to remove the continuity assumptions 
on the coefficients at the boundary and to reformulate (6.57) and (6.58) 
appropriately. 

We remark that when aD is not in C 2 , the preceding considerations are still 
applicable provided a C 2 domain ii can be found such that Xo E cD ("'\ aii and 
B ("'\ Dc B ("'\ ii for some ball B containing xO. The above conditions for the 
existence of a barrier at x,p then remain valid if the distance function d(x) is re
placed by d(x)=dist (x, aD). 

The preceding remarks and those earlier in this section concerning the exterior 
sphere condition show the existence of a barrier at the following sets of boundary 
points of a C2 domain 0 where the coefficients aii, bi are continuous: 

};1 = {xo E 001 inequality (6.58) holds} 
(6.59) 

};2 = {xo E oDlaiivj"xO)Vi(XO) =I: 0, where v(xo) is normal to aD}. 

Taken together with Theorem 6.11 these results yield: 

Theorem 6.25. Let the operator L in (6.1) be elliptic in a C2 domain 0 with c ~ 0 in 
o and aii, bip .. , c, fI). E C~(D) ("'\ CO(Q). Assume}; 1 u }; 2 = aD. Then the problem 

Lu = f in 0, u = cp on 00, 

has a unique solution u E C2(D) ("'\ CO(Q)for all cp E CO (aD). 

We note that under certain conditions on L and aD, a solution is uniquely 
determined by the values of cp on }; t U }; 2 even if}; 1 U }; 2 =I: aD, as in the example 
(6.54). A maximum principle related to such a boundary value problem is contained 
in Problem 6.10. 

6.7. Other Boundary Conditions; the Oblique Derivative Problem 

Until now we have been concerned only with Dirichlet boundary conditions. We 
now develop an analogue of the Schauder theory for the regular oblique derivative 
problem. 
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Poisson's Equation 

In extending the Schauder theory to other linear boundary value problems our 
point of departure is the theory of Poisson's equation in the half-space IR~ = 
{x I xn>O} with the oblique derivative boundary condition, 

n 

(6.60) Nu=au+ L b;DiU=CP on xn=O, 
i= I 

in which the coefficients a, hi are constants. We also write the boundary operator N 
in the equivalent forms 

Nu= au + b· Du = au +bP,u + bnDnu 

where b=(bl' ... , bn)=(b,. bn) and D=(D 1, ••• , Dn)=(D" D;,), D, denoting the 
tangential gradient. We assume throughout the regular oblique derivative condition 
bn =/; 0, and to fix our ideas we take at first 

(6.61) bn>O, 

The latter condition is an inessential normalization which allows us to write 

Nu=au+D.u 

where D.u=iJu/iJs is the directional derivative in the direction of the vector b. 
We consider initially the homogeneous boundary condition Nu = 0 on Xn = 0 

and construct a harmonic Green's function in IR~ satisfying this boundary condi
tion. Letting r denote the fundamental solution (4.1) of Laplace's equation, we 
write for n~3 and a~O 

00 

(6.62) G(x, y) = T(x - y) - T(x - y*) - 2bn f flU DnT(x - y* + bs) ds, 
o 

where x, y E IR~, Dn=iJ/iJxn, and y* =( Y1' .. " Yn-1' - Yn) =( y', - yn). Clearly 
G is harmonic in x and y for x i= Y and by direct calculation one finds 

(6.63) NG(x, y)=O on xn=O. 

(Here N operates on G as a function of x for fixed y.) Thus G has the required 
properties of a Green's function for the boundary condition (6.63). 

The choice of G in (6.62) is motivated by the following considerations. If 
G(x, y) = T(x - y)+ h(x, y) is the desired harmonic Green's function satisfying 
(6.63), then NG is also harmonic in x (for y =/; x) and vanishes on Xn = 0.1t follows 
from the Schwarz reflection principle (Problem 2.4) that NG is regular in IRn 
except for the singularity 

aT(x- y)+b,D,T(x- y)+bnDnT(x-y)-aT(x-y*) 

- b,D,T(x - y*) + bnDnT(x - y*). 



122 6. Classical Solutions; the Schauder Approach 

Here we have used the fact that Djnx*-y*)=Djnx-y) for i=I. ... , n-I, 
while Dnnx* - y*) = -DnF(x - y). Thus if we impose the condition that NG 
vanish at infinity, it follows from the Liouville theorem 

Djl+ah= -anx-y*)-brDrnx - y*)+bnDn(x- y*) 

= -anx-y*)- Dsnx-y*)+2bnDnnx-y*). 

This implies 

Ds[eaS h(x + bs, y)) = - [anx - y* + bs) + Dsnx - y* + bs)] eas 

Integrating with respect to s from s = 0 to s = 00 and then integrating by parts, we 
obtain 

h(x,y)= -nx-y*)-2bn f eas Dnr{x-y*+bs)ds. 
o 

This expression for h gives us (6.62), which is valid also when bn = O. 
We now examine G(x, y) more closely with the objective of deriving estimates 

analogous to those in Chapter 4 for the Newtonian potential and solutions of 
Poisson's equation. 

Letting ~ = (x - Y*)/lx - )'*1, we have 

G(x, y) = r(x - y) - r(x - y*) + 8(x, y) 

where 

'" 
8(x, y)= -2bn f easDnnx- y*+bs) ds, a~O, 

o 

=lx_Y*12-ng(~.lx_Y*I>· 

One sees that 9 is regular in its arguments since (by (6.61» ~·b>-Ibrl>-l 

for all x, Y E IR: and hence the denominator of the integrand is bounded away from 
zero. The function 8(x, y) = 8(x - y*) satisfies the relations 

D",8(x, y)= -Dy ,8(x. y), i= 1. .... n-I; 

(6.64) D"n8 (x, y)=Dyn8(x, y); 

I Dfl8(x, y)1 ~ Clx - y* 12-n-lfll, C = C(n, IPI, bn). 
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These relations will suffice in extending the details of Lemma 4.10 for the Newtonian 
potential to the analogous integral J B(x, y)f( y) dy. If Ibl # I we replace a by 
alibi and bn by bJlbl in the preceding. We note that since a:<::;O the constant C in 
(6.64) can be taken independent of a. 

Theorem 6.26. Let 8 1 = BR(xO)' B2 = B 2R(X O) denote balls with center Xo E iR:, 
and let B:=81 n IR:, Bt=B2 n IR:, T=B2 n {xn=O}. Suppose that UE 

C 2(B;)nC I (B; u T) satisfies t1u=f in B;, fEC2(B;). and the boundary 
condition(6.60),Nu = cponT,witha:<::; O,bn > OandcpEC1.~(T). ThenuEC2,I1(Bt) 
and 

where C = C(n. tX. bJlbl). 

(Here 1 I' denotes the weighted norms (4.6)' defined with respect to R.) 

Proof It is assumed that T is non-empty for otherwise the stated result is already 
contained in Theorem 4.6. Suppose first that cp = o. Ibl = I and n > 2. Consider the 
function 

Bi 

where 

WI(x)= f [nx-y)-r(x- y*)]f( y) dy 

Bi 

w2(x) = f B(x. y)f(y) dy. 

B; 

We have already seen in (4.26) that WI satisfies the estimate 

The estimation of w2 is essentially the same as that for the Newtonian potential 
in Lemma 4.10. Letf(x) be defined by even reflection with respect to x n ' so that 
f(x', -xn)=f(x', xn)' Then a representation analogous to (4.9) is valid for the 
second derivatives of w 2; namely, for x E B; and i, j = I .... , n, we have 

Bi 

-f(x) S DjB(x - y*)vi y) dsy , 

oBi 
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wherev=(vl"'" vn ) is the outward unit normal to oB;. By virtue of (6.64) the 
arguments of Lemmas 4.4 and 4.10 carryover without essential change to give the 
estimate 

Combining this inequality with (6.66), we obtain 

(6.67) ID2WI~,";Bt~qfl~.d;' C=C(n, a, bn )· 

If IbI-::f.l we replace bn by b.,llbl in this estimate. 
To obtain estimates for u from the preceding, let" E C~(B2) be a cutoff function 

such that ,,(x) = 1 for Ix - xol ~ (!)R and IDP"I ~ CjRIPI for IPI ~ 2. Then, we 
have 

u(X),,(X) = f G(x, y)A[u(y),,(y)] dy, 

Bt 

XEBJ. 

If x E Bi , so that I x - y I > R/2 where D" -::f. 0, we obtain 

u(X) = f("Gf + uA,,) dy + 2 f GDu . D" dy, 

Bt Bt 

= f<"Gf + uA,,) dy - 2 f u(DG . D" + GA,,) dy. 

Bt Bt 

The required estimate (6.65) when cp = 0 now follows from (6.67), the bounds 
IDP"I ~ CjRIPI, and, by (2.14) and (6.64), 

where the indicated derivatives may be with respect to both x and y variables. 
We now remove the restriction that cp =0. For this purpose we seek a function 

t/! E c2• «(En satisfying Nt/! = cp on T.1t can be assumed that cp is suitably extended 
outside Tso that cp E q.2(Rn-J) on xn=O; (see Lemma 6.38). Choosing a non
negative function" E cg(Rn-J) such that J ,,( y') dy' = 1, y' =( Yl' .. " Yn-J)' we 
define 

(6.68) t/!(X)=t/!(X',Xn)=b;Jxnf qJ(x'-xny'),,(y')dy'. 
Rn-I 

One verifies easily that t/!(x', 0)=0, Dnl/l(x', O)=b; J qJ(x'), and hence 

(6.69) NI/I=cp on xn=O. 
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That r/J E C 2'''(IR:) is seen from the relations 

bnDijr/J(x)= f DjqJ(x' -xny')Dj'1( y') dy', i,j#n; 

bnDjnr/J(x)=- fy'·DqJ(X'-x ny')Dj'1(y')dy', i#n; 

bnDnnr/J(x)= f y'·DqJ(x'-xny')[(n-2)'1(y')+y'·D'1(y')] dy'. 

We observe also that 

where the constant C depends only on n and the choice of'1. 
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We are now able to make the reduction to the case qJ=O. Letting v=u-r/J, 
it follows that L1v = f - L1r/J E Cfl(1li), and by virtue of (6.69) we have Nv = 0 on 
T. From (6.70) and the proven estimate for v we obtain (6.65). 0 

We remark that in general the constant C in (6.65) becomes unbounded as 
bn - O. 

The following estimate is a consequence of the preceding theorem and is stated 
without proof. The details are similar to the proof of Theorem 4.8. 

Lemma 6.27. Let Q be a bounded open set in IR: with boundary portion Ton 
xn=O, and let u E C 2(Q) n C·(Q u T) satisfy L1u=f in Q. IE C"(U). and the 
boundary condition (6.60), Nu = qJ on T, with a~O. bn>O and qJ E C·,fl(T). Then 

lulL;nv T ~ c(lulo;n+ Icpl.,I1; T+ I/lo,l1;u), 

where C= C(n. (x, b"llbl. diam Q). 

The same argument as in Lemma 6.1 provides the following extension to the 
oblique derivative problem. 

Lemma 6.28. Under the same hypotheses as in Lemma 6.27 let u satisfy Lou=1 
(in place of L1u = f), where Lo is the constant coefficient operator defined in Lemma 
6.1. Then 

(6.71) lulL;nv T~ c(lulo;n+ IqJl •. ,,; T+ Iflo.%;u) 

where C= C(n, (x, A., A, b"llbl, diam Q). 

Variable Coefficients 
We consider now equations with variable coefficients and the corresponding obliq ue 
derivative problem in domains with curved boundaries. The extension of the 
estimates of the Schauder theory to these boundary conditions follows closely the 
ideas in Sections 6.1 and 6.2. We derive first an analogue of Lemma 6.4. 
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Lemma 6.29. Let Q be a bounded open set in IR':, with a boundary portion Ton 
xn=O. Suppose that UE C 2 .2(Q u T) is a solution in Q of Lu=f(equation (6.1» 
satisfying the boundary condition 

n 

(6.72) N(x')u==y(x')u+ L Pj(x')Dju=qJ(x'). x' E T. 
i= 1 

where IP I ~ K > 0 for some constant K. It is assumed that L satisfies (6.2) and that n _ 

fE C"(D). qJ E CI,"(7\ di • bi• c E C2(D) andy. Pi E CI.IJ(T) with 

Then 

(6.73) lulL;uv T~ C(fulo;u+ IqJ11,2; T + Iflo. 2;U)' 

where C= C(n, a:, A., A. K, diam Q). 

Proof We remark first that it can be assumed y~O and Pn>O. For by setting 
v=uel'x", where k~sup lyl/K. the boundary condition (6.72) is taken into 

with Pn(y-kPn)~O. At the same time Lu=f is transformed into an equation 
L'v = f' satisfying the same hypotheses as in the theorem. The desired estimate (6.73) 
is obviously equivalent to the corresponding estimate for v. 

The technique in Theorem 6.2 and Lemma 6.4 of "freezing" the coefficients is 
once again applicable, with certain modifications due to the boundary condition 
(6.72). Thus, letxo• Yo be any two distinct points in Qand supposeJxo =min (Jxo' J yo )' 

where Jx=dist (x, oQ- T). Let J1.~ 1/4 be a positive constant (to be specified 
later), and set d=J1.Jxo' Bd=Bixo)' If Bd n T#l/J let x~ denote the projection of 
Xo on T. As in Theorem 6.2 we rewrite the equation Lu=fin the form (6.15) and 
the boundary condition (6.72) as 

(6.74) N(x'o)u = [N(x'o) - N(x')]u(x') + qJ(x') == <J>(x'), x' E T, 

and we consider (6.15). (6.74) as a problem in Bd n Q with constant coefficients, 
disregarding (6.74) if Bd n T = l/J. The argument in Theorem 6.2 and the analogous 
one indicated in Lemma 6.4 proceed in essentially the same way, except that 
Lemma 6.28 now replaces Lemma 6.1 in the details. Thus in place of(6.16) we now 
obtain 

(6.75) 
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The estimation of the right number is essentially as in Theorem 6.2 with the 
exception of the additional term 14>11.IX;B"T. Concerning this term, one sees that 

The details are similar to those leading to (6.19) and are not carried out here. 
Combining this estimate with that for the other terms in (6.75) we arrive at the 
desired estimate (6.73). 0 

The preceding lemma can now be extended to domains with curved boundaries. 
A repetition of the arguments in Lemma 6.5 and Theorem 6.6 leads to the following 
global estimate for solutions of the oblique derivative problem. 

Theorem 6.30. Let D be a C 2 •• domain in IR", and let u E C2.~(Q) be a solution in 
D of Lu= f satisfying the boundary condition 

" 
N(x)u:=y(x)u+ L 13i(x)D iu=cp(x), x E aD, 

i= I 

where the normal component 13. of the vector fl = (13 .. .. . ,13") is non-zero and 

(6.76) 113,.1 ~ K > 0 on cD (K = const). 

It is assumed that L satisfies (6.2) and thatfE e(Q), cp E Cl·~(Q), aij, bi , c E e(,O) 
and y, 13i Eel. ~(Q) with 

Then 

(6.77) 

where C = C(n, tx, A., A, K, Q). 

Remarks. 1) Condition (6.76) implies that the directional derivative fl· Du is 
nowhere tangential to aD. This hypothesis is essential in the present considerations. 
2) In the statement of the theorem it is convenient and involves no loss of generality 
to assume that cp, y and 13i are defined globally (rather than on aQ), so that the 
norm I II.~; U is well defined for these functions. In Theorem 6.26 and Lemmas 
6.27-6.29 where T was a hyperplane boundary portion, a global extension of 
cp (and of y, 13i in Lemma 6.29) was not used since the norm I 11.11; T was naturally 
defined. 3) That Icpll.lI appears in the estimate (6.77) is to be expected since Nu 
involves first order differentiation of the C2.~ function u. This is in contrast with 
the corresponding global estimate (6.36) for the Dirichlet boundary condition 
which requires that cp E C 2 • 1I • 
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We have thus far been concerned only with estimates for the oblique derivative 
problem. The actual solution of the problem for Lu = / can be reduced to that for 
Poisson's equation by the method of continuity (as in Theorem 6.8), but the 
method now involves a continuous family of both differential operators and 
boundary operators. Unique solvability of the oblique derivative problem, under 
appropriate additional restrictions on the operators Land N, is provided in the 
following theorem. 

Theorem 6.31. Let L be a strict(r elliptic operator with c~O and coefficients in 
C"(U) in a C2 • a domain D. Let Nu == yu + Il· Du define a boundary operator on aD 
such that y(Il' v) > 0 on aD if v is the outward unit normal on aD. Assume that y, 
Il E C 1,~(aQ). Then the oblique derivative problem 

(6.78) Lu=/in D, Nu=cp on aD 

Proof We assume without loss of generality that y>O and ll·v>O on aD and 
also that cp and Il are extended to all of U and are contained in C 1. "( U). Consider 
the family of problems for 0 ~ t ~ I : 

L,u==tLu+(l-/)Ltu=/in D, 

(6.79) 

N,u == tNu + (1 - t)(~~ + u) = cp on aD. 

We note that LI = L, Lo = Lt, N I = N, No = alav + identity, and that for suitable 
positive constants A, A the coefficients a;i, b;, c, of L, satisfy 

and 

Also, since Il . v ~ P' > 0 and y ~ y' > 0 for some constants P', y', we have 

y,=(I-/)+ty~min (I, y'»O 

1l,·v=(I-/)+tll·v~min (I, P'»O on aD 

while IIlI I ." is also bounded independently of t. 

Consider any solution U E C 2'''(li) of the problem (6.79) (for some t). lub ... 
satisfies the estimate (6.77) with a constant C independent of t. By estimating lulo 
in terms of cp and/we shall obtain in addition a bound 

(6.80) 

valid for all C 2 '''(D) solutions of(6.79). 
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To estimate lul o we first make a substitution v = u/w where w is a fixed C°(.O) n 
C 2( Q) function (independent of t) satisfying the conditions: (i) w ~ W > 0; (ii) L,w ~ 
c<o; (iii) y,+Il,·Dw/w~ y>O on aD, where w, c, yare constants. Such a function 
w can be chosen in the form w(x)=c1 -cz el'XI if J1 is sufficiently large and c1' Cz 
are suitable positive constants. The substitution v=u/w transforms (6.79) into 
another problem: It v = j = I/w in D, N, v = ip = cp/w on aD, in which the coef
ficient Lt w/w of v in It v satisfies Lt w/w ~ c/w < 0 and the coefficient }it of v in Nt v 
satisfies Yt = "It + Ilt . Dw/w ~ y > O. If now sup I v I = I v(xo) I at some X o E D, then 

Q 

sup Ivl = Iv(xo)1 ~ II(xo)/el ~ sup III/lei, 
Q U 

and hence 

lulo~sup w sup Ivl ~ QIl o, 
U U 

where C is a constant independent of t. On the other hand, if sup Ivl = Iv(xo)1 for 
Q 

some X o E aD, then either 

or 

sup Ivl = v(xo) ~ r 1($ - Ilt' DV)x=XQ ~ $(xo)/Y 
Q 

sup Ivl = -v(xo)~ y- 1( -$ + Ilt' DV)x=XQ ~ -$(xo)/y 
Q 

and thus lulo~C sup Icpl. The estimate (6.80) follows at once from (6.77). 
iJU 

The argument proceeds now essentially as in Theorem 6.8. Let 

with 

IIU, CP)\I$2 = IIlo.a;Q + Icpll,a;oQ' 

and consider the operator 

The solvability of the problem (6.79) for arbitrary IE Ca(.Q), cp E Cl,a(aD) is 
equivalent to showing that £t is one-to-one and onto. Let UI denote a solution of this 
problem for given I, cpo It is unique (see Problem 3.1) and from (6.80) we have the 
bound 
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or, equivalently, 

the constant C being independent of t. The fact that 20 is invertible is a consequence 
of the solvability in C 2 .<I(.Q) of the third boundary value problem: 

L1u=fin D, 
au 

u+ av = CfJ on aD. 

We refer to the literature of potential theory for this result; (see [G U], for example). 
Assuming this result, we conclude from (6.81) and the method of continuity 
(Theorem 5.2) that the theorem is proved. 0 

If either of the conditions y > 0 or c:S;; 0 is not satisfied in the preceding theorem, 
unique solvability is no longer assured, and one can assert instead the Fredholm 
alternative as in Theorem 6.15. The method of proof is basically the same. An 
immediate consequence of the alternative is solvability when c:S;;O, y~O and 
either c¢O or y¢O, since uniqueness holds under these conditions. 

6.8. Appendix I : Interpolation Inequalities 

We prove here the interpolation inequalities quoted in the course of Chapter 6. We 
begin with the inequalities for interior norms and seminorms. 

Lemma 6.32. Suppose j + {J < k + a, where j, k = 0, I, 2, ...• and O:S;; a, {J:s;; I. 
Let D be an open subset ofR" and assume u E C"·<I(Q). Thenfor any t:>0 and some 
constant C=C(t:, k,j) we have 

(6.82) [u]j,,,; o:S;; qUlo; n + t:[u]:.<I; o· 

lulj,,,;o:S;; qulo;o+t:[u]:.<I;o· 

Proof We shall establish (6.82) for the casesj, k=O, 1,2 needed in the present 
work. A direct extension of the ideas and a suitable induction yield the stated result 
for arbitrary j, k. 

It is assumed that the right member of (6.82) is finite since otherwise the asser
tion is trivial. For notational convenience we omit the subscript D, the domain D 
being implicitly understood. We consider several cases: 

(i)j= I, k=2; a=/J=O. We wish to show 

(6.83) [un:s;; C(t:)lulo + t:[u]! 
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for any e>O. Let x be any point in 0, d" its distance from aD, and Jl~t a positive 
constant to be specified later. We set d=Jld" and B=Bd(x). For any i= I, 2, ... , n. 
let x " x" be the endpoints of the segment of length 2d parallel to the Xj axis with its 
center at x. Then for some x in this segment we have 

and 

I _ 2 2 
~dlulo+dsupdy supdyIDjju(Y)I. 

yeB yeB 

Since dy> d" - d=( I - Jl) d" ~ dJ2 for all Y E B, it follows that 

d"IDju(x)1 ~Jl-1Iulo+4Jl sup d;IDjju( Y)I~Jl-1Iulo+4Jl[uH. 
yen 

Hence 

"en 
i:::::: 1, ... ," 

If now Jl is chosen so that Jl ~ e/4 we conclude (6.82) with C = Jl- 1. 

(ii) j~k; p=O, (%>0. We proceed in a similar manner. As before let xED, 
O<Jl~t, d=jld", B=Bd(x), and let x', x" be the endpoints of the segment of 
length 2dparallel to the Xl axis with its center at x. For some x on this segment we 
have 

(6.84) 

and 

IDj/u(x)1 ~ IDj/u(x)1 + I Dj/u(x) - Dj/u(x)1 

I 
~ d sup d; I sup dylDju( y)1 

yeB ),eB 

+d'" d-2-", d2+'" IDj/u(x)-Dj/u(y)1 
sup ",)' sup oX,), I I'" . 
),eB )'eB x-Y 

Again. since d)" d",),>doX/2 for all Y E B, it follows that 
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Taking the supremum over i, I and XED, choosing Jl. so that 8Jl.a ~ t; and setting 
C=2/Jl., we obtain the inequality 

(6.85) [uJ! ~ C(t;)[u]! +t;[u]!.~. 

If u replaces DiU in (6.84) and the obvious modifications are made in the ensuing 
details, we obtain (6.82) for j = k = 1, fJ = 0, (X> 0: 

(6.86) [u]!~C(t;)lulo+t;[u]!.~. 

Combining (6.85) with (6.83) after appropriate choice of t; in each of these inequali
ties, we arrive at (6.82) for k=2 andj= 1,2. 

(iii) j<k; fJ>O, (X=O. Let x, y E D with dx~dy' so that dx=dx.y • Let Jl., d, 
and B be defined as before. We prove (6.82) for the casej=O, first establishing the 
interpolation inequality 

[u]~, P ~ C(t;)lul o + t;[u]!, 

where t;>0 may be arbitrary for O<fJ< 1. If y E B, we obtain from the theorem 
of the mean, for O<fJ~ 1, 

dplu(x)-u(Y)I~ I-PdID I ~2 I- P[ ]*. 
x Ix-yiP ""Jl. x U O;B"" Jl. U l' 

and if y ¢ B, we have 

(6.87) dp lu(x)-u(Y)I~2 -PI I 
x I IP "" JI u o· x-y 

Combining these inequalities, we obtain for 0 < fJ ~ 1 

(6.88) [ ]* dP lu(x)-u(y)1 2 -PI I 2 l-P[]* 
u 0, P = sup x, y I IP ~ II u 0 + Jl. U l' 

x.yeO x-y 

This implies (6.82) when fJ < I and 2Jl. 1 - P ~ e. Applying (6.83) to the right member 
of (6.88) and choosing Jl. appropriately, we obtain (6.82) for j=O, k=2, (X=O, 
0< fJ ~ 1. The prooffor j = 1, k = 2 proceeds in much the same way after replacing 
u with DiU. There is the following difference, however. In place of (6.87) we now 
have the inequality, 
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The conclusion again follows by application of (6.83). 
(iv) j~k: IX, P>O. It suffices to take j=k and hence IX>P. With the same 

notation as above, we have for y E B 

d(J lu(x)-u(Y)I~Il~-1l d~ lu(x)-u(y)l, 
x Ix-ylli x Ix-YI~ 

while if Y ¢ B, 

dlllu(x) - u( y)1 ~ 2 -III I 
x I III '" 11 u o' X-Y 

Combining these inequalities and taking the supremum over x, Y E Q, we obtain 
(6.82) forj= k=O with e= Il~-II and c= 2/1111. The remaining cases whenj=k = 1,2 
follow in a similar way with the use of results from case (ii). 

The interpolation inequality (6.82) for seminorms immediately implies the norm 
inequality 

An application of Lemma 6.32 yields the following compactness result. 

Lemma 6.33. Let Q be a bounded open set in ~"and let S be a bounded subset of 
the Banach space 

Suppose the functions of S are also equicontinuous on n. Then if k+lX>j+P, it 
follows that S is precompact in C~II(Q). 

Proof Since Sis equicontinuous on n and bounded in C!·~, it contains a sequence 
{u",} that converges uniformly on n to a function u E C!·~. By hypothesis we may 
assume lu",I:'~~M (independent of m). From (6.82) we have for any e>O and 
some constant C = C( e) 

If now N is so large that lu", - ul o ~ e/C for all m> N, it follows that IUm - uI1 Jl ~ 
e(l + 2M) for m>N. Thus {um) converges to u in C~·Jl, which proves the assertion 
of the lemma. 0 

We now extend Lemma 6.32 to partially interior norms and seminorms in 
domains with a hyperplane boundary portion. 
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Lemma 6.34. Suppose j+/3<k +IX, where j, k=O, J, 2, ... , and 0";;'1X,/3,,;;, I. 
Let Q be an open subset of IR':, with a boundary portion Ton xn=O, and assume 
u E C k • %(Q u T). Then for allY e > ° and some constant C = qe, j, k) we have 

(6.89) 
[uJj, p; 0 u T:::; qulo;o + e[uJ:. %;0 u T' 

lulj,p;o u T:::; qulo;o +e[uJ:,a;O u T' 

Proof Again we suppose that the right members are finite. The proof is patterned 
after that of Lemma 6.32 and we emphasize only the details in which the proofs 
differ. In the following we omit the subscript Q u T, which will be implicitly 
understood. 

We consider first the cases 1 :::;j:::; k :::; 2, /3 = 0, IX ~ 0, starting with the inequality 

(6.90) [uJ!:::; qe)lulo +e[uJL, IX> 0. 

Let x be any point in Q, ax its distance from oQ- T, and d=/lax where /l:::;± 
is a constant to be specified later. If dist (x, T) ~ d, then the ball Bd(x) c Q and the 
argument proceeds as in Lemma 6.32, leading to the inequality 

provided /l = /l(e) is chosen ~ufficiently small. If dist (x, T) < d we consider the ball 
B= Bixo) c Q, where Xo is on the perpendicular to T passing through x and 
dist (x, x o) =d. Let x', XU be the endpoints of the diameter of B parallel to the x, 
axis. Then we have for some x on this diameter 

and 

hence 

2 a- 2 [ J* :::;- x U l' 
/l 

since ay >a)2 for all Y E B; 

a;IDiIU(x)1 :::;~[uJ~ + 16/l%[uJ! /l .% 

:::; C[uJi +e[uJL 

provided 16/l%:::; e, C = 2/ /l. Choosing the smaller value of /l, corresponding to the 
two cases dist (x, T)~d and dist (x, T)<d, and taking the supremum over all 
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X E a and i, 1= I, ... , n, we obtain (6.90). If u replaces Diu in the preceding and 
the details are modified accordingly, we obtain (6.90) for j=k = l. 

To prove (6.89) for j= I, k=2, a.=(3=O, we proceed as in Lemma 6.32 with 
the modifications suggested by the above proof of (6.90). Together with the 
preceding cases, this gives us (6.89) for I ~j~k ~2, (3=0, a.~0. 

The proof of(6.89) for (3)0 follows closely that in cases (iii) and (iv) of Lemma 
6.32. The principal difference is that the argument for (3)0, a.=0 now requires 
application of the theorem of the mean in the truncated ball Bd(x) n a for points 
x such that dist (x, T)<d. 0 

We conclude this section with the proof of global interpolation inequalities in 
smooth domains. 

Lemma 6.35. Suppose j + (3 < k + a., where j = 0, I, 2, ... , k = I, 2, ... , and 
O~a., (3~ l. Let a be a C",:>, domain in Rft, and assume u E C"·:>'(D). Then/or any 
e>O and some constant C= C(e,j, k, a) we have 

Proof. The proofis based on a reduction to Lemma 6.34 by means of an argument 
very similar to that in Lemma 6.5. As in that lemma, at each point Xo e iJa let 
Bp(xo) be a ball and'; be a C",:>. diffeomorphism that straightens the boundary in a 
neighborhood containing B'=Bp(xo) n a and T=Bp(xo) n iJa. Let ';(B')= 
D' c R~, t/I(T) = T' caR~. Since T' is a hyperplane portion of aD', we may apply 
the interpolation inequality (6.89) in D' to the function a = u 0 ';-1 to obtain 

lalj,_; D' v T' ~ C(e)lal o; D' + elal:.:>.; D' v T" 

From (6.30) it follows 

lulj, _; B' v T ~ C(e)lulo; B' + elul:, II; B' v T' 

(We recall that the same notation C(e) is being used for different functions of e.) 
Letting B"=Bp/2(xO) n a, we infer from (4.17)" (4.17)" 

(6.92) 
lulj._;B" ~ C(e)lulo.B' + elul".OE;B' 

~ C(e)lulo;o+elul".:>.;o· 

Let Bp,/4(Xi )' Xi E aa, i = I, ... , N, be a finite collection of balls covering 
ca, such that the inequality (6.90) holds in each set B'/ = Bp ,/2(Xi ) n a, with a 
constant Ci(e). Let b=min pj4 and C=C(e)=max Ci(e). Then at every point 
Xo E aa, we have B= Bixo) c Bp;/2(X i ) for some i and hence 

(6.93) lulj,_;B"'O~qulo;o+elul".II;o. 

The remainder of the argument is analogous to that in Theorem 6.6 and is left 
to the reader. 0 
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The global interpolation inequality (6.91) is valid in more general domains, for 
example in Co, 1 domains; (see Problem 6,7). However, as shown in the example on 
page 53, suitable regularity of the domain D is required to insure the inclusion 
relation Ck'''(D)cCi,fJ(Q) when k+a.>j+{3, and hence the global interpolation 
inequalities are not true in arbitrary domains. 

Lemma 6,35 implies the following compactness result. 

Lemma 6.36. Let D be a C k,,, domain in iii" (with k?: 1) and let S be a bounded 
set in Ck'''(Q). Then S isprecompact in CM(Q) ifj+{3<k+a.. 

The proof is essentially the same as that of Lemma 6.33 and is therefore omitted. 
The result is obviously valid for domains in which the global interpolation in
equality (6.91) holds, hence in Co. 1 domains. 

6.9. Appendix 2: Extension Lemmas 

This section establishes some results needed earlier in this chapter and elsewhere 
in this work concerning the extension of globally defined functions into larger 
domains and the extension of functions defined on the boundary to globally 
defined functions. 

We shall use the concept of a partition of unity. Let D be an open set in iii" 
covered by a countable collection {Dj } of open sets Dj' A countable set of func
tions {'7J is a locally finite partition of unity subordinate to the covering {Dj } if: 
(i) '7i E C~(Di) for some j=j(i); (ii) '7i?:O, .E'7i= I in D; (iii) at each point of D 
there is a neighborhood in which only a finite number of the '7i are non-zero. For 
the proof of existence of such a partition we refer to the literature; (for example, 
see [YO], also Problem 6.8). In the following applications the construction of the 
partition is relatively simple. 

Lemma 6.37. Let D be a C k.« domain in iii" (with k?: 1) and let D' be an open set 
containing D. Suppose u E Ck'''(D). Then there existsafunction WE C~'«(D') such that 
w=u in Dand 

(6.94) Iwlk.«;n,~qulk, .. ;n' 

where C= C(k, D, D'). 

Proof Let y = "'(x) define a C k .2 diffeomorphism that straightens the boundary 
near Xo E aD, and let G and G+ = G n IR: be respectively a ball and half-ball in 
the image of", such that "'(xo) E G. Setting u(y)=u 0 ",-I(y) and y=(YI' " ., 
Yn- I' Yn) =( y', Yn)' we define an extension of u( y) into Yn <0 by 

k+ I 

u(y',y")= L cju(y', -yji), Yn<O, 
j= 1 
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where c I' ... , ck + 1 are constants determined by the system of equations 

k+ 1 

L () -I/i)m= I, m=O, I, ... , k. 
i~ 1 

One verifies readily that the extended function u is continuous with all derivatives 
up to order k in G and that u E Ck'~(G). Thus w=u 0 '" E Ck'~(B) for some ball 
B= B(xo) and w = u in B n D, so that w provides a Ck, ~ extension of u into DuB. 
By (6.30) the inequality (6.94) holds (with DuB in place of D'). 

Now consider a finite covering of aD by balls Bi' i= I, ... , N, such as B in the 
preceding, and let {wJ be the corresponding Ck,~ extensions. We may assume 
the balls Bi are so small that their union with D is contained in D'. Let Do C cD 
be an open subset of D such that Do and the balls Bi provide a finite open covering 
of D. Let {"i}, i = 0, I, ... , N, be a partition of unity subordinate to this covering, 
and set 

W=u"o+ L Wi"i 

with the understanding that Wi"i=O if"i =0. One verifies from the above discussion 
that W is an extension of u into D' and has the properties asserted in the lemma. 0 

The following result provides an extension of a boundary function to a globally 
defined function in the same regularity class. 

Lemma 6.38. Let D be a Ck,,, domain in ~n(k ~ I) and let D' be an open set containing 
U. Suppose <p E Ck,~(aD). Then there exists a function ~ E C~'''(D') such that 
~=<p on aD. 

Proof At any point X o E aD let the mapping", and the ball G be defined as in the 
preceding lemma, and assume that cp=<p 0 ",-1 E Ck'''(G n a~n +). We define 
q;(y', Yn )=cp(y') in G and set ~(x)= q; 0 "'(x) for x E ",-I(G). Clearly ~ E C t , ~(B) 
for some ball B=B(xo) and ~=<p on B n aD. Now let {Bj} be a finite covering of 
aD by balls such as B, and let ~j be the corresponding Ck ,,, functions defined on Bj • 

The proof can now be completed as in the preceding lemma by use of an appropriate 
partition of unity. 0 

Remarks. 1) In the preceding lemma, if <p E Co(aQ) n Ck'''(T) where TcaD, 
then the same argument leads to an extension ~ E CO(D') n Ck'''(G), where G is an 
open set containing T. A simple modification of the above proof shows that if D 
is any domain with Ck,,, boundary portion T and if <p E C k,I1.(T), then <p can be 
extended to a function ~ E C k ,,,( G), where G is an open set containing Tand ~ = <p 
on T. A countable covering of T by balls is required for the argument. 
If <p E C°(iJQ) n Ck'''(T) then the extension ~ can be determined so that 
~ E CO(U) n ck·I1.(G). 2) For domains with a simple geometry the construction 
of an extended function can often be made directly and easily. Thus if B=BR(xO) 
is a ball in ~n and <p E Co(aQ) n Ck ,l1.( T), Tc aB, then an extension of <p into 
~n can be obtained by setting 

~(x) = ~(xo + rw) = <p(Rw),,(r), 
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where r= Ix -xol, w=(x - xo)/r, and ,,(r) is a COC cut-off function such that ,,(r) =0 
for 0~r~R/4, ,,(r) = I for r~R/2. The function C/>(x) obviously coincides with 
(() on iJB, is in CO(~n) and is of class Ck ,« in the conical region determined by the 
rays from the origin through the points of T. 

Notes 

The apriori estimates and existence theory in Sections 1-3 are, in modified form, 
the contributions of Schauder ESC 4, 5]. At about the same time, Caccioppoli 
rCA I] stated without details similar results, which were elaborated by Miranda 
[MR 2], Closely related ideas are contained in the work ofHopf[HO 3] who earlier 
established the interior regularity theorems of Section 4. The existence theory and 
general properties of solutions for essentially the same class of problems were 
previously obtained by Giraud [GR 1-3], who used the method of integral 
equations based on representing solutions as surface potentials. Further details 
amplifying on the respective contributions are discussed by Miranda [MR 2]. 
A development of the Schauder estimates based on methods of Fourier analysis, 
for equations of arbitrary order, is contained in Hormander [HM 3]. 

The formulation of the interior estimates of Section I in terms of interior norms 
and the method of derivation are patterned after Douglis and Nirenberg [ON], 
who also extended the interior estimates to elliptic systems. The details of proof of 
Theorem 6.2 can be simplified somewhat if the estimates are first carried out in 
balls, using Theorem 4.6, and at the end are converted into the bound (6.14) for the 
C2 ,« interior norm. See, for example, the proof of Theorem 9.11. 

The global estimates of Section 6.2 and the proof of Theorem 6.8 based on these 
estimates assume C 2 ,« boundary data. Under weaker regularity hypotheses an 
existence proof for say c1'«(ll> n C 2(U) solutions does not follow from the 
Schauder theory in its usual form. Such an existence theorem is implied by re
gularity results of Widman [WI 1]. Gilbarg and Hormander [GH] have extended 
the global Schauder theory to include conditions of lower regularity of the coef
ficients, domain and boundary values. We summarize their results, which apply to 
conditions of higher regularity as well: 

If 

o ~ k < a = k + (X ~ k + 1, 

let H a(U) denote the Holder space of functions with finite norm I u la, a = I u I", II; a 
(the latter being in the notation of this book; thus H a(U) = Ck,IZ(Q). Setting 

Ull = {x E Uldist(x, iJU) > t5}, 

let H~b)(U) denote the set of functions on U belonging to H,.{UIl ) for all t5 > 0 and 
with finite norm 

lul(b) = lul(b) = sup t5a+bl u l 
11.11 a 41'06' 

1l>0 
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where a + b ~ O. Since H~-b) c H~-b) = Hb for a ~ b > 0, b a noninteger, the 
upper and lower indices in the norm lul~-b) describe, respectively, the global and 
interior regularity of u. Define also H~ - O)(a) to be the set of functions in H~b) such 
that <5" + b I u I .. , ad -+ 0 as <5 -+ O. Having these spaces, now let U be a bounded CY 
domain for some l' ~ 1, and a, b be nonintegers such that 0 < b ~ a, a> 2, b ~ 1'. 
Let 

P = L p/I(x)D/I 
1/11 :!O2 

be an elliptic second-order differential operator on Q such that 

P/I E H~2_-2b)(a) if IPI ~ 2, 

P/I E Co(m if IPI = 2, 

PfJ E H~2_-2IfJl-O) (U) if b < IPI. 

(Thus the lower-order coefficients may be unbounded if b < 2.) Then, if 1I E 

C2(a) 11 Co(m is a solution of 

(6.95) Pu = fin U, u = qJ on au 

where f E H~2_-2b)(a), qJ E Hb(oa), it follows that u E H~-b)(U) and satisfies an 
estimate 

where C depends on U, a, b, the norms of the coefficients and their minimum eigen
value. If Po ~ 0 the Dirichlet problem (6.95) has a unique solution in H~-b), and a 
corresponding Fredholm-type theorem holds in general. The case 2 + IX ~ a = 
b ~ l' is the one treated in this chapter. If U is a Lipschitz domain, analogous results 
hold for values b < 1 that depend on the exterior cone condition satisfied at the 
boundary; and it suffices that P/I E H~O~ 2 for I P I = 2, so that the principal coefficients 
need not be continuous at the boundary. 

The conditions under which a regular boundary point for the Laplacian is also 
a regular point for an elliptic operator, and conversely, have been studied by several 
authors. The equivalence has been proved for strictly elliptic operators L, as in 
Theorem 6.13, whose coefficients near the boundary are Lipschitz continuous [HR] 
or Dini continuous [KV 1], [NO 2]; and also for certain classes of discontinuous 
coefficients [AK] and degenerate elliptic operators [MM], [NO 3]. Capacity and 
the Wiener criterion (Section 2.9) play an important part in the arguments. If the 
coefficients of L are only continuous, the equivalence no longer holds in general (see 
the example in Problem 3.8(a), also [ML 4]). However, in the case of divergence 
structure equations, there is equivalence when the coefficients are only bounded 
and measurable [LSW] (see also Chapter 8). For additional results on regular 
boundary points, see [NO 1], [MZ], [LN 2], [ML 2,4]. 
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Hopf [HO 3] proves directly the interior regularity result, Lemma 6.16, 
without an existence theorem. His method, based on Korn's device (in [KR 2]) of 
perturbation about the constant coefficient equation, provides an extension of his 
results in [HO 2] on the regularity of solutions of variational problems and antici
pates important aspects of the Schauder theory. A simple direct proof of Lemma 
6.16 (and of more general results), based on regularization and interior estimates, 
is contained in [ADN 1], p. 723. For another approach see the proof of Lemma 9.16; 
also [MY 5], Section 5.6. 

A basically simpler proof of the boundary regularity result, Lemma 6.18, can 
be obtained as follows. It suffices to prove that u E C2(.o u n, after which the 
argument proceeds essentially as in Lemma 6.16. By considering u - cp in place 
of u, we may assume cp=O. Let .o'c.o with o.o'no.o=T'ccT, and let 
15 = dist (.0', a.o - T) < I. For any x' E .0' suppose first 

d=dist (x', o.o)=lx' -xol ~J, Xo E 0.0. 

Then by Problem 3.6 we have 

lu(x)1 ~ C/x - xol for x E .0, 

and hence lu(x)1 ~ Cd for x E Bix '). From (6.23), in which we set .0' = BtJj2(x ') 
and .0 = Bix '), it follows that for all x E Bd/2(x '), 

dIDu(x)1 ~ C(sup lui + d2Iflo.lI; Bd)' 
Bd 

and hence 

IDu(x')1 ~ C( 1 + 1.flo.II;Q)~ C, 

where the constant C depends only on 15 and the given data. If d> 15, then the same 
inequality holds, with the constant C now depending on 15 - 1. We thus have a 
bound on IDul in .0' and consequently u E Co. 1(.0 u n. 

Section 6.5 is a modification of the ideas of Michael [MIl] who has shown that 
a general existence theory for continuous boundary values can be developed from 
interior estimates only. His results apply as well to certain classes of equations with 
unbounded coefficients near the boundary; (see Problems 6.5, 6.6). 

Section 6.6 considers some cases of non uniformly elliptic operators for which 
the ellipticity degenerates on the boundary. The theory of elliptic operators that 
degenerate in the interior is based on essentially different methods from those of 
this chapter. For the relevant results the reader is directed to the literature on 
hypoellipticity, e.g., [HM 2], [OR], [KJ]. 

The Schauder theory of the oblique derivative problem in Section 6.7 differs 
in some respects from earlier versions. In particular, Fiorenza [FJ I] based his 
approach on the representation by surface potentials of solutions of the boundary 
value problem (6.60) for Poisson's equation in a half-space, to which he applied 
some of the results of Giraud [GR 3]. His Schauder-type estimates for the case of 
variable coefficients exhibit a quite precise dependence on the bounds and Holder 
constants of the coefficients. This dependence is used in [LU 4], Chapter 10, and by 
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Fiorenza [FI 2] and UraI'tseva [UR] to treat quasilinearequations with nonlinear 
boundary conditions. An extension of the Schauder theory to other boundary 
conditions for higher order equations and systems appears in Agmon, Douglis and 
Nirenberg [ADN 1,2]. Their method is based on explicit integral representations of 
solutions of the constant coefficient problem in a half-space in terms of appropriate 
Poisson kernels for the given boundary conditions. Although the details are quite 
different, the development in Section 6.7 can be viewed as a special case of these 
results. See also Bouligand [BGD]. The nonregular oblique derivative problem, in 
which the directional derivative in the boundary condition becomes tangential 
({3.=0 in (6.76», is essentially deeper than the regular case and the results are 
different; see, for example, [HM 1], [EK], [SJ] and [WZ 1,2]. 

The solution of exterior boundary value problems can be inferred readily from 
the results of this chapter. Meyers and Serrin [MS I] treat boundary value prob
lems for the equation Lu = f in an exterior domain Q (containing the exterior of some 
ball), with c::;; ° and coefficients andfHolder continuous in bounded subsets of Q. 

Under suitable general hypotheses on the behavior of the coefficients at infinity they 
prove the existence of solutions in Q with a limit at infinity from the convergence of 
solutions in expanding domains. They obtain the result, among others, that iff = 0, 
bi =0, aij --+ a~ at 00 and the matrix [a~] has rank ~ 3, then there is a unique 
solution in Q of the Dirichlet (and other) problems vanishing at infinity. Under 
these conditions, if n> 3 the operator L may be non-uniformly elliptic at infinity 
and the boundary value problem is still well posed. An extension of the Schauder 
theory to exterior domains for n ~ 3, including Holder estimates at infinity and a 
corresponding treatment of the exterior Dirichlet and Neumann problems, has 
been given by Oskolkov [OS I]. An exterior Neumann problem for a class of 
quasilinear equations when n ~ 3 is treated in [FG 2]. 

The interpolation inequalities of Appendix 1 can easily be derived from the 
general convexity property of Holder norms: 

lul".a::;; c(l ul",.aJ(l ul"2.aY -I, 

where 0< t < 1, 

k + 0( = t(k l + 0(1) + (l - t)(k2 + 0(2), 

and the norms may be interior or global. For proof of this inequality, see Hormander 
[HM 3]. 

Problems 

6.1. (a) Let u E C" + 2, a(Q), k ~ 0, be a solution of Lu = f in a bounded open set 
Q c ~", and assume the coefficients of L satisfy (6.2) and laij, bi, cl".a;o ::;; A. If 
Q' ceQ, show that 

lulk+ 2.a;O·::;; C(lul o: u+ If I". a; 0) 

where C = C(n, k, 0(, A., A, d), d = dist (Q', oQ). 
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(b) In Theorem 6.2 assume U E Ck+2.1l(Q), k~O, and replace (6.13) by the 
conditions 

laijl lOl Ihilol lel(21:5::A 
k, «' k, CI' k. (I ""'" • 

Prove the interior estimate 

where C= C(n, k, oc. A., A). 

6.2. In Theorem 6.6 let a be a Ck+2.11 domain, k ~ 0, and assume U E Ck+2.Il(Q), 
cp E Ck+2·1l(!l).fE Ck· Il(Q),laij, hi, elk.d2~A. Prove the global estimate 

where C= C(n. k, oc, A.. A. Q). 

6.3. Prove Theorem 6.13 for a bounded domain a satisfying an exterior cone 
condition. Show that at each point X o E aa there is a local barrier detennined by 
a function of the form rP/«(}), where r = Ix - xol and () is the angle between the vector 
x - X o and the axis of the exterior cone; (cf. [ML I, 3]). 

6.4. Prove the following extension of Corollary 6.24'. Let a be a bounded strictly 
convex domain in IR" and let the equation 

be elliptic in a with coefficients in C~(Q). For Xo E aa let v=v(xo) denote the 
unit normal to a supporting plane (directed outward from Q). At each X o suppose 
b· v >0 in B(xo) n a for some ball B(xo)' Then the Dirichlet problem for Lu = 0 
is (uniquely) solvable in C2'~(Q) n CO(Q) for arbitrary continuous boundary 
values. 

6.S. (a) Prove Lemma 6.21 if the ball B is replaced by an arbitrary C 2 domain 
a; (see Problem 4.6), 

(bl Extend part (a) to admit coefficients hi satisfying sup d; -Yjbi(x)1 <00 for 
n 

some ')I E (0, 1) and coefficients e ~ O. 

6.6. (a) Use the argument in Problem 6.5 to construct a barrier and prove the 
solvability of the Dirichlet problem, Lu=/(c"!!!;"O) in a, u=o on aa, where L is 
strictly elliptic in the C 2 domain a, and the following conditions are satisfied: 
the coefficients aij are bounded; aij, hi, e, / E CI(Q); sup d; -IlW(x)1 < 00 and 

sup d; -1l1/(x)1 < 00 for some P E (0, I). 
n 

n 



Problems 143 

(b) Under the additional hypothesis, sup d; -fllc(x)1 < oc" extend part (a) to 
u 

include the boundary condition U=qJ on oQ, where qJ is continuous. 

6.7. Prove the global interpolation inequality (6.91) if Q is a Co. 1 (Lipschitz) 
domain. The result can be obtained as follows: 

(i) Prove there is a constant K depending only on Q such that every pair of 
points x, y in Q can be connected by an arc y(x, y) in Q whose length 17(.x, )')1 
~ Klx - YI. 

(ii) Show that for some constants Po and L depending only on Q, if Y E Q and 
dist(y,oQ) < Po, then for all P < Po there is a point x E Bp(Y) such that Bp/L2(X) c Q. 

(iii) Use parts (i) and (ii) in a modification of the proof of Lemma 6.34 to 
establish (6.91). 

6.8. Let {QJ be a countable open covering of an open set Q in ~". If either 
(a) Q is bounded and Qc u Qj. or (b) Q j is bounded and QjcQ, i= 1.2, .... 
prove the existence of a partition of unity {'1;} such that '1j E C~(Qj)' 

6.9. (a) Use a partition of unity and the definition of ck,a domains in Section 6.2 to 
show that any such domain Q with k ~ 1 can be defined by a function FE Ck, a(Q), 
such that F > 0 in Q, F = 0 on oQ and grad F '" 0 on oQ. 

(b) Use part (a) and approximation by smooth functions to show that any 
ck,a domain Q(k ~ 1), defined by F > 0, can be exhausted by arbitrarily smooth 
domains Q., defined by F. > 0, such that 

as v --+ 00, 

where C is a constant independent of k. 

6.10. Let L be elliptic in a C2 domain Q, with c ~ 0 and aij, bi E CO(Q). Let 
E = E 1 U E 2 c oQ be defined by (6.59). Suppose U E CO(Q) n C2(Q - E) satisfies 
Lu ~ 0 in Q. Then, if either c < 0, or aii > 0, for some i, on oQ - E, prove that 

sup u ~ sup u+. 
U E 

(Use the distance function to flatten the boundary near an assumed maximum on 
oQ - E, and consider the differential equation there. Cf. [OR].) 

6.11. Under the hypotheses of Theorem 6.30, but assuming IP;io,a ~ A in place 
of IP;il,a ~ A, prove the estimate 

where C = C(n, ex, A., A, K, Q). 
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Sobolev Spaces 

To motivate the theory of this chapter we now consider a different approach to 
Poisson's equation from that of Chapter 4. By the divergence theorem (equation 
(2.3» a C2(Q) solution of Au = / satisfies the integral identity 

(7.1) f Du· Dcp dx= - f/cp dx 

for all cp E C~(Q). The bilinear form 

(7.2) (u, cp)= f Du·Dcp dx 
n 

is an inner product on the space C~(Q) and the completion of C~(D) under the 
metric induced by (7.2) is consequently a Hilbert space, which we call W~·2(Q). 

Furthermore, for appropriate/the linear functional Fdefined by F(cp) = - f /cp dx 
n 

may be extended to a bounded linear functional on w~· 2(Q). Hence, by the Riesz 
representation theorem (Theorem 5.7), there exists an element u E w~· 2(Q) satis
fying (u, cp) = F( cp) for all cp E C~ (Q). Thus, the existence of a generalized solution 
to the Dirichlet problem, Au = f, u = 0 on oD, is readily established. The question 
of classical existence is accordingly transformed into the question of regularity of 
generalized solutions under appropriately smooth boundary conditions. In the next 
chapter, the Lax-Milgram theorem (Theorem 5.8) will be applied to linear elliptic 
equations in divergence form in a similar manner to the above application of the 
Riesz representation theorem and by means of various arguments based on integral 
identities, regularity results will be established. But before we can so proceed 
we need to examine the class of Sobolev spaces, that is, the Wk, P(Q) and W~' P(Q) 
spaces of which the space W~,2(Q) is a member. Some of the inequalities we treat 
will also be necessary for the development of the theory of quasilinear equations 
in Part II. 
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7.1. LP Spaces 

Throughout this chapter Q will denote a bounded domain in IR". Bya measurable 
function on Q we shall mean an equivalence class of measurable functions on Q 
which differ only on a subset of measure zero. Any pointwise property attributed 
to a measurable function will thus be understood to hold in the usual sense for some 
function in the same equivalence class. The supremum and infimum of a measurable 
function will then be understood as the essential supremum and infimum. 

For p ~ I, we let U(Q) denote the classical Banach space consisting of measur
able functions on Q that are p-integrable. The norm in U(Q) is defined by 

(7.3) Ilullp;u = Ilullu(D) = (f,u,P dx riP. 
U 

When u is a vector or matrix function the same notation will be used, the norm I u I 
denoting the usual Euclidean norm. For p = 00, L <Xl(Q) denotes the Banach space 
of bounded functions on Q with the norm 

(7.4) Ilull<Xl;u = IluIILOO(U) = sup lui. 
U 

In the following we shall use II ull P for II ull LP(U) when there is no ambiguity. 
We shall need the following inequalities in dealing with integral estimates: 

Young's inequality. 

(7.5) 
aP bq 

ab~-+-; 
p q 

this holds for positive real numbers a, b, p, q satisfying 

I I 
-+-= l. 
p q 

The case p=q = 2 of inequality (7.5) is known as Cauchy's inequality. Replacing 
a by el/Pa, b by e- 'IPb for positive e, we obtain a useful interpolation inequality 

(7.6) 
eaP e-qlPbq 

ab~-+--
p q 

~eaP+ e-q/Pbq. 

Holder's inequality. 

(7.7) f uv dx~ Ilullpllvllq; 
U 

this holds for functions u E U(Q), V E U(Q)' I/p+ I/q= I and is a consequence 
of Young's inequality. When p=q=2, Holder's inequality reduces to the well 



146 7. Sobolev Spaces 

known Schwarz inequality. That the expression (7.3) defines a norm on U(Q) 
is a consequence of Holder's inequality. Let us note some other simple consequences 
of Holder's inequality. 

(7.8) IQI-I/Pllullp~IQI-l/qllullq foruEU(Q), p~q. 

(7.9) Ilullq~ lIull~llulI: -). for U E U(Q), 

where P ~ q ~ rand llq = A.lp + (l - A.)lr. 
Combining inequalities (7.6) and (7.9), we obtain an interpolation inequality for U 
norms, namely, 

where 

We shall also have occasion to use a generalization of Holder's inequality to m 
functions, u1" . ,urn ' lying respectively in spaces UI, . .. U"', where 

I 1 
-+ ... +-=1. 
PI Pm 

The resulting inequality, obtainable from the case m = 2 by an induction argument, 
is then 

(7.11) f u1 ' .• urn dx~ Ilulll pl ' . ·llumllp...,. 
n 

It is also of interest to study the U norm as a function of p. Writing 

for p>O, we see that tP is non-decreasing in p for fixed u, by inequality (7.8), 
while the inequality (7.9) shows that tP is logarithmically convex in p-I. Note that 
tPiu)=IQI-I/Pllullp for p~1. Although the functional tP does not extend the U 
norm as a norm for values of p less than one, it will nevertheless be useful for later 
purposes (see Chapter 8). 

We also note here some of the well known functional analytic properties of the 
U spaces; (see for example Royden [RY]). The space U(Q) is separable for 
p< 00, CO(Q) being in particular a dense subspace. The dual space of U(Q) is 
isomorphic to U(Q) provided IIp+ llq= 1 and p< 00. Hence U(Q) is reflexive 
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for I <p< 00. The number q, the Holder conjugate of p, will often be denoted p'. 
Finally, L 2(0) is a Hilbert space under the scalar product 

(u, v)= f uv dx. 
u 

7.2. Regularization and Approximation by Smooth Functions 

The spaces ck• ~(O) which were introduced in Chapter 4 are local spaces. Let us 
define local analogues of the U(D) spaces by letting Lfoc(O) denote the linear 
space of measurable functions locally p-integrable in O. Although they are not 
normed spaces, the Lfoc(O) spaces are readily topologized. Namely, a sequence 
{um} converges to u in the sense of Lfoc(O) if {um} converges to u in U(O') for 
each O'e: e:O. 

Let p be a non-negative function in CCO(IR") vanishing outside the unit ball Bl (0) 

and satisfying f p dx= 1. Such a function is often called a mollifier. A typical 

example is the function p given by 

{ ( I) cexp --
p(x)= 0 Ix12_1 

for Ixl~ I 

for Ixl~ 1 

where c is chosen so that f p dx = 1 and whose graph has the familiar bell shape. 

For u E Ltoc(D) and h>O, the regularization of u, denoted by Uh' is then defined 
by the convolution 

f (x-y) (7.13) uh(x)=h-" p -h- u( y) dy 
u 

provided h < dist (x, aD). It is clear that uh belongs to CCO(O') for any 0 I e: e: 0 
provided h < dist (D', aD). Furthermore, if u belongs to U(O), 0 bounded, then Uh 

lies in CO'(IR") for arbitrary h > O. As h tends to zero, the function y 1--+ h-"p(x - y/h) 
tends to the Dirac delta distribution at the point x. The significant feature of 
regularization, which we partly explore now, is the sense in which Uh approximates 
U as h tends to zero. It turns out, roughly stated, that if U lies in a local space, then 
Uh approximates u in the natural topology of that space. 

Lemma 7.t. Let U E CO(D). Then Uh converges to u uniformly on any domain 
D'e:e:O. 
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Proof We have 

u,,(x)=h- n f pe:Y)U(Y) dy 
/x-,/"" 

= f p(z)u(x-hz) dz (putting Z= x: y} 
/_/" 1 

hence if a'c ca and 2h<dist (0', aQ), 

sup lu-u"l~ sup f p(z)lu(x)-u(x-hz)1 dz 
0' xeO' /./" 1 

~ sup sup lu(x)-u(x-hz)l. 
xeO' /-1" 1 

Since u is uniformly continuous over the set 

B,,(a') = {x I dist (x, a')<h}, 

u" tends to u uniformly on a'. 0 

7. Sobolev Spaces 

The convergence in Lemma 7.1 would be uniform over all of a if u vanished 
continuously on aa. More generally if u E Co(m we can define an extension 
u of u such that u = u in a and u E CO(D) for some D:::J :::J a. Then U", the regulariza
tion of u in 0, converges to u uniformly in a as h --+ O. 

The process of regularization can also be used to approximate Holdercontinuous 
functions. In particular if u E CeI(Q), O~ IX~ I, then 

where a" = B,,(a '). and consequently u" tends to u in the sense of e' (a ') for 
every IX' < IX and a' c ca. as h --+ O. Using Lemma 6.37 and Lemma 7.3 of the 
following section we can then conclude approximation results for ck• elm) functions; 
(see Section 6.3). 

We turn our attention now to the approximation of functions in the Lroc(a) 
spaces. 

Lemma 7.2. Let UE Lroc(Q)(U(a». p<oo. Then uh converges to u in the sense 
of Lroc(Q)(U(Q». 

Proof Using Holder's inequality, we obtain from (7.13) 

lu,,(x)iP~ f p(z)lu(x-hz)iP dz. 
/_/" 1 
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so that ifO'e eOand 2h<dist (0', aO), 

f lu"I P dx~ f f p(z)lu(x-hzW dz dx 
0' 0' ~1~1 

= f p(z) dz f lu(x-hzW dx 
Izl~ 1 0' 

~ f lulP dx, 
Bh(O', 

where B,,(O') = {x I dist (x, O')<h}, Consequently 

The proof can now be completed by approximation based on Lemma 7.1. Choose 
£>0 together with a Co(O) function w satisfying 

where 0" = 8",(0') and 2h' < dist (0'. (0). By virtue of Lemma 7.1. we have for 
sufficiently small h 

Applying the estimate (7.15) to the difference u-w. we therefore obtain 

lIu-u,,11 L"(O"~ lIu-wll L"(O',+ Ilw-w,,1I LPW',+ Ilu,,-w,,1I L"W') 

~2£+ Ilu-wIIL"(O .. ,~3£ 

for small enough h ~ h'. Hence u" converges to u in L.!c(O)' The result for u E U(O) 
can then be obtained by extending u to be zero outside 0 and applying the result 
for L.!..(R"). 0 

7.3. Weak Derivatives 

Let u be locally integrable in 0 and (I any multi-index. Then a locally integrable 
function v is called the (I'" weak derivative of u if it satisfies 

(7.16) f cpv dx=( _1)1"1 f uD"cp dx for all cp E Col"I(O). 

o 0 
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We write v=l?u and note that l?u is uniquely determined up to sets of measure 
zero. Pointwise relations involving weak derivatives will be accordingly understood 
to hold almost everywhere. We call a function weakly differentiable if all its weak 
derivatives of first order exist and k times weakly differentiable if all its weak 
derivatives exist for orders up to and including k. Let us denote the linear space of k 
times weakly differentiable functions by W"(D). Clearly C"(O) c W"(O). The 
concept of weak derivative is thus an extension of the classical concept which 
maintains the validity of integration by parts (formula (7.16». 

We proceed to consider some basic properties of weakly differentiable functions. 
The first lemma describes the interaction of weak derivatives and mollifiers. 

Lemma 7.3. Let u E'L.'o.,(O), ex a multi-index, and suppose that IYu exists. Then 
if dist (x, aD) > h, we have 

(7.17) IYu,,(x) = (l?u),,(x). 

Proof By differentiating under the integral sign, we obtain 

l?u,,(x)=h- II f ~p(x~Y)U(y) dy 
a 

=h- II fpe~Y)I?U(Y)dY by (7.16) 
a 

= (IYu),,(x). 0 

From Lemmas 7.1, 7.3 and the definition (7.16), now follows automatically a 
basic approximation theorem for weak derivatives, the explicit verification of 
which is left to the reader. 

Deorem 7.4. Let u and v be locally integrable in D. Then v=D"u if and only 
if there exists a sequence of C «>(D) functions {um } converging to u in L~c(O) whose 
derivatives IYum converge to v in £.'0.,(0). 

This equivalent characterization of weak derivatives can also be used as their 
definition, as is often the case. The resulting derivatives then are usually called 
strong derivatives so that Theorem 7.4 establishes the equivalence of weak and 
strong derivatives. Through Theorem 7.4, many results from the classical differential 
calculus may be extended to weak derivatives simply by approximation. In 
particular we have the product formula 

(7.18) D(uv)=uDv+vDu; 
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this holds for all u, v E Wl(Q) such that uv, uDv+vDu E LI~c(Q); (see Problem 
7.4). Also if t/I maps Q onto a domain Qc ~n with t/I E C I(Q), t/I- 1 E C I(Q) and 
if u E Wl(Q), V= uot/l- 1, then v E W I(Q) and the usual change of variables formula 
applies, that is 

(7.19) 
oy. 

DiU(X)=~ Dyv(y) 
uX. J 

I 

for almost all x E Q, y E Q, y = t/I(x) (see Problem 7.5). 
It is important to note that locally uniformly Lipschit:ll continuous functions 

are weakly differentiable, that is, CO.I(Q)c Wl(Q). This assertion follows since a 
function in CO. 1(Q) will be absolutely continuous on any line segment in Q. Con
sequently its partial derivatives (which exist almost everywhere) satisfy (7.16) and 
hence coincide almost everywhere with the weak derivatives. By means of regulari
zation, we can in fact prove that a function is weakly differentiable if and only 
if it is equivalent to a function that is absolutely continuous on almost all line 
segments in Q parallel to the coordinate directions and whose partial derivatives are 
locally integrable; (see Problem 7.8). The basic properties of weak differentiation 
treated in this and the following section can be alternatively derived from this 
characterization. 

7.4. The Chain Rule 

To complete our basic calculus of weak differentiation. we consider now a simple 
type of chain rule. 

Lemma 7.5. LetJE Cl(~)J' E L~(~)andu E Wl(Q). ThenthecompositeJunction 
J 0 u E Wl(Q) and DUo u)=f'(u) Du. 

Proof Let um' m= 1, 2, ... E CI(Q), and let {um}, {DUm} converge to u, Du 
respectively in Lloc(Q). Then for Q' ceQ. we have 

Q' Q' 

Q' Q' 

+ f If'(um) -f'(u)IIDul dx. 
Q' 

A subsequence of {um}, which we renumber {u",}, must converge a.e. (Q') to u. 
SinceI' is continuous, {f'(um)} converges tof'(u) a.e. (Q'). Hence the last integral 
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tends to zero by the dominated convergence theorem. Consequently the sequences 
{j{um)}, {f'(um)Dum} tend to /(u), f'(u)Du respectively, and therefore Dj{u)= 
f'(u)Du. 0 

The positive and negative parts of a function u are defined by 

u+ = max {u, O}, u- =min {u, O}. 

Clearly u=u+ +u- and lui =u+ -u-. From Lemma 7.5 we can derive the following 
chain rule for these functions. 

DU+={~U ifu > 0 
ifu ~ 0 

(7.20) DU-={O 
ifu ~ 0 

Du ifu < 0 

r ifu > 0 
Dlul= 0 ifu = 0 

-Du ifu < O. 

Proof For 8>0. define 

Applying Lemma 7.5 we then have, for any q> E C~(Q), 

f f uDu 
/.(u)Dq> dx = - q> (2 2 1/2 dx 

U +8 ) 
a u>O 

and on letting 8 - 0, we obtain 

f u+ Dq> dx= - f q>Du dx 
a u>O 

so that (7.20) is established for u+. The other results follow since u- = -( -u)+ 
and lui =u+ -u-. 0 

Lemma 7.7. Let u E Wl(Q). Then Du=O a.e. on any set where u is constant. 

Proof Without loss of generality we may take the constant to be zero. The result 
follows immediately from (7.20) since Du= Du+ + Du-. 0 
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We call a function piecewise smooth if it is continuous and has piecewise 
continuous first derivatives. The following chain rule then generalizes Lemmas 
7.5 and 7.6. 

Theorem 7.S. Let f be a piecewise smooth function on R with f' E L CO(R). Then 
ifu E W 1(D), we havef 0 u E Wl(a). Furthermore, letting L denote the set of corner 
points of J, we have 

(7.21) D fo ={f'(U)DU ifu II L 
( u) 0 if L l U E • 

Proof By an induction argument the proof is reduced to the case of one comer 
which we may take without loss of generality at the origin. Let fl' fl Eel (R) 
satisfy f;, f; E LCO(R), fl(U)=f(u) for U~O, fl(u)=f(u) for U~O. Then since 
f(u) =fl(U+) +f2(U-), the result follows by Lemmas 7.5 and 7.6 ... 0 

Combining Lemma 7.7 and Theorem 7.8, we see that if h is a finite valued 
function on R, satisfying h(u)=f'(u) for u II L, then Df(u) = h(u)Du. The chain 
rule in this form may be extended to Lipschitz continuous f and u E Wl(a) for 
which h(u)Du E L~c(D). The proof of this assertion requires somewhat more 
measure theory than we have used; it is however a consequence of the characteriza
tion of weakly differentiable functions given in Problem 7.8. 

7.5. The Wk. P Spaces 

The W",P(D) spaces are Banach spaces analogous in a certain sense to the C"·<I(,O) 
spaces. In the W", P(a) spaces, continuous differentiability is replaced by weak 
differentiability and Holder continuity by p-integrability. For p~ I and k a non
negative integer, we let 

The space Wk,P(a) is clearly linear. A norm is introduced by defining 

(7.22) Ilull",p;u = Ilullwk.J>(U) = (f L lD'"ulP dX)I/P. 
,<1,:11; " 

U 

We shall also use Ilull",p for lIu1lk,p;U when there is no ambiguity. An equivalent 
norm would be 

(7.23) Ilullwk. P(U)= L lID'"ull p. 
,<1,:11; " 

The verification that Wk,p(a) is a Banach space under (7.22) is left to the reader 
(Problem 7.10). 
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Another Banach space W~'P(Q) arises by taking the closure of C~(Q) in 
Wk,P(Q). The spaces Wk,P(Q), W~'P(Q) do not coincide for bounded Q. The case 
p=2 is special, since the spaces Wk.2(Q), W~,2(Q) (sometimes written Hk(Q), 

H~(Q) will be Hilbert spaces under the scalar product 

(7.24) (U, V)k= f L Da.uDa.v dx. 
n 1a.IH 

Further functional analytic properties of Wk. P(Q) and W~' P(Q) follow by con
sidering their natural imbedding into the product of Nk copies of U(Q) where 
Nk is the number of multi-indices IX satisfying IIXI ~ k. Using the facts that finite 
products and closed subspaces of separable (reflexive) Banach spaces are again 
separable (reflexive) [DS], we obtain accordingly that the spaces Wk,P(Q), W~'P(Q) 
are separable for I ~p < 00 (reflexive for I <p < (0). 

The chain rule of Theorem 7.8 also extends to the spaces WI,P(Q), W~'P(Q). 
In fact as a consequence of Theorem 7.8 and the definitions of these spaces we have 
immediately that the space WI(Q) in the statement of Theorem 7.8 may be re
placed by WI,P(Q), and by W~'P(Q) ifalsoj(O) =0. 

Local spaces w.~,!(Q) can be defined to consist of functions belonging to 
Wk,P(Q') for all Q'c cQ. Theorem 7.4 shows that functions in WI~'t(Q) with 
compact support will in fact belong to W~'P(Q). Also, functions in WI.P(Q) which 
vanish continuously on oQ will belong to W ~' P(Q), since they can be approximated 
by functions with compact support. 

In the case p = 00, the Sobolev and Lipschitz spaces are related. In particular, 
W~~COO(Q) = Ck- I, I(Q) for arbitrary Q, and Wk,OO(Q) = Ck-I,I(D) for sufficiently 
smooth Q, e.g., for Lipschitz Q; (see Problem 7.7). 

7.6. Density Theorems 

It is clear from Lemmas 7.2 and 7.3, that if u lies in Wk,P(Q), then /YUh tends to 
/Yu in the sense of Lf'oc(Q) as h approaches zero, for all multi-indices IX satisfying 
IIXI ~ k. Using this fact we shall derive a global approximation result. 

Theorem 7.9. The subspace COO(Q) n Wk,P(Q) is dense in Wk,P(Q). 

Proof Let Qj' .i = I, 2, ... , be strictly contained subdomains of Q satisfying 
Qjc cQj+ I and u Qj=Q, and let {t/lj}, j=O, 1,2, ... , be a partition of unity 
(see Problem 6.8) subordinate to the covering {Qj+I-Qj_I}' Qo and Q_ I being 
defined as empty sets. Then for arbitrary U E Wk, P(Q) and e > 0, we can choose 
hj • .i= l. 2 ..... satisfying 

(7.25) 
hj~dist (Qj • oDj + I)' j~ I 

e 
II (t/lp)"j -t/lpllwk,"(m~ 2}' 
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Writing vj=(t/lP)hj' we obtain from (7.25) that only a finite number ofvj are 
non-vanishing on any given 0' ceO. Consequently the function V= L Vj belongs 
to COO(D). Furthermore 

This completes the proof. 0 

Theorem 7.9 shows that W"'''(D) could have been characterized as the com
pletion of COO(O) under the norm (7.22). In many instances this is a convenient 
definition. 

In the case of arbitrary 0 we cannot replace COO(D) by COO(D) in Theorem 7.9. 
However, COO(U) is dense in Wk, "(D) for a large class of domains 0 which includes 
for example C1 domains (see Problem 7.11). More generally, if 0 satisfies a segment 
condition (that is, there exists a locally finite open covering {.:¥Ii} of ao and cor
responding vectors yi such that x + tyi E 0 for all x E Q () .:¥Ii' t E (0, 1», then 
COO(Q) is dense in W"'''(O). (See [AD]). 

7.7. Imbedding Theorems 

This and the following section are concerned with the connection between point
wise and integrability properties of weakly differentiable functions and the 
integrability properties of their derivatives. One of the simplest results in this 
direction is that weakly differentiable functions of one variable must be absolutely 
continuous. In this section we prove the well known Sobolev inequalities for functions 
in W~'''(D). 

lbeorem 7.10. 

Furthermore, there exists a constant C= C(n, p) such that, for any u E W~'''(D), 

(7.26) 
lIullll"/(II_")~ CUDull" for p<n, 

sup lul~ qDjl/lI-l/"IIDulip for p>n. 
a 

Proof Let us first establish the estimates (7.26) for C~(O) functions. We proceed 
from the case p= I. Clearly for any u E C~(O) and any i, 1 ~ i~n. 

Xi 

lu(x)l~ f I DiUI dxi , 
-00 
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so that 

The inequality (7.27) is now integrated successively over each variable x j , i = 
I, ... , n, the generalized Holder inequality (7.11 ) for m = PI = ... = P'" = n - I then 
being applied after each integration. Accordingly we obtain 

(7.28) 

( 
n )I~ 

Ilulin/(n-ll~ III IIDjul dx 
- a 

I n 

~- I L IDjul dx 
n a j=1 

Thus inequality (7.26) is established for the case P= I. The remaining cases can 
now be obtained by replacing u in the estimate (7.28) by powers of lui. In this way 
we get for "I> I, 

IIlulrlln/(n-11 ~ ~ IlulY-IIDul dx 
a 

by Holder's inequality. Now for p<n we may choose "I to satisfy 

"In ("I- 1)p 
n-l= p-l 

. (n-l)p 
I.e. "1= , 

n-p 

and consequently obtain 

as required. 
The case p>n follows immediately by combining inequalities (7.34), with 

q= 00, J.l= lin, and (7.37) of the following section. We insert here an alternative 
proof which is based on the case p = I. 

For p>n, let us write ' 

• Jnlul U=--
II Dull p 
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and assume that lal = 1. We obtain then 

, n , p 
n =--,p=--, 

n-\ p-\ 

so that 

II -II I/YII-III-i/y U yn'~Y U p'(y_l) 

~yl/Yllull:;,I/Y since IDI= I. 

Let us substitute for Y the values {)V, v = 1, 2, ... , where 

n' 
{)=-> I. 

p' 

We obtain thus 

Iterating from v= 1 and using (7.28), we get for any v 

Consequently as v -+ 00, we obtain by Problem 7.1, 

and hence 

supii~X. 
u 

sup lui ~ ~ IIDulip' 
u ",n 
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To eliminate the restriction lal= 1, we consider a transformation: Yj=lall/nxj. 
We obtain thus 

as required. 
To extend the estimates (7.26) to arbitrary U E Wci,p(D), we let {um} be a 

sequence of Cci(D) functions tending to U in Wi. P(D), Applying the estimates (7.26) 
to differences Um, -um2' we see that rUm} will be a Cauchy sequence in Lnp/(n-p)(D) 

for p<n and in CO(D) for p>n. Consequently the limit function u will lie in the 
desired spaces and satisfy (7.26), 0 
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Remark. The best constant C satisfying (7.26) for the case p<n was calculated 
by Rodemich [ROJ, see also [BLJ, [T A 2J, who showed that 

C= __ I- ( n! r(nI2) )l/n yl_IIP, y= n( p-l) . 
ny0r 2r(nlp)r(n+ I-nip) n-p 

When p = I, the above number reduces to the well known isoperimetric constant 
n-l(wn)-l/n. 

A Banach space !JI 1 is said to be continuously imbedded in a Banach space 
!JI2 (notation: !JI 1 -+ !JI2) if there exists a bounded, linear, one-to-one mapping: 
!JI 1 -+ !JI2' Theorem 7.10 may be thus expressed as WJ·P(U) -+ Lnplln- PI(O) if 
p < n, -+ Com) if p > n. By iterating the result of Theorem 7.10 k times we arrive at 
an extension to the spaces W~·P(O). 

Corollary 7.11. 

for kp < n 

n 
forO~m<k--· 

p 

The second case is a consequence of the first, together with the case p > n in 
Theorem 7.10. 

The estimates (7.26) and their extension to the spaces W~· p(m also show that a 
norm on W~·P(O) equivalent to (7.22) may be defined by 

(7.29) II ull w~. PIQ) =(J L lD"ulP dx)IIP 
a 1"I=k 

In general, W~· P( 0) cannot be replaced by Wk. P(D) in Corollary 7.11. However, 
this replacement can be made for a large class of domains D, which includes for 
example domains with Lipschitz continuous boundaries. (See Theorem 7.26). 
More generally, if D satisfies a uniform interior cone condition, (that is, there 
exists a fixed cone Ka such that each xED is the vertex of a cone Ka(x) c n 
and congruent to Ka), then there is an imbedding 

(7.30) 

for kp<n 

n 
for O~m<k--· 

p 

where C;(D) = {u E Cm(D)/D"u E L "'(0) for lal ~ m}. 
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7.8. Potential Estimates and Imbedding Theorems 

The imbedding results of the preceding section can be alternatively derived and 
also improved through the use of certain potential estimates. Let J.l. E (0, 1] and 
define the operator VII on L 1(.0) by the Riesz potential 

(7.31) (VJ)(x)= fl x -ylft(Il- 11(y)dy. 

a 

That VII is in fact well defined and maps L 1(.Q) into itself will appear as an incidental 
consequence of the next lemma. First we observe, by settingf=: 1 in (7.31), 

For, choose R>O so that 1.01= IBR(x)l=wIR". Then 

flx-YI"(1l-1)dy~ f Ix-yl"(1l- 1)dy 

a BIl(>:) 

=J.l.- 1wIR"1l 

=J.l.- 1w!-"I.oIIl. 

Lemma 7.12. The operator VII maps LP(.o) continuously into Lq(.o) for any q, 
1 ~q~oo satisfying 

Furthermore,for any f E LP(.Q), 

Proof Choose r ~ I so that 

r- I =I+q-l-p -I=I-l>. 

Then it follows that h(x - y) = Ix - yl"(1l- 1) E L'(.o), and by (7.32) one obtains 

"h"r~(~=:y-6 w!-IlI~,,-6. 

The estimate (7.34) can now be derived by adapting the usual proof of the Young 
inequality for convolutions in 1R". Writing 



160 7. Sobolev Spaces 

we may estimate by the Holder inequality (7.11) 

{ }
1/4{ }I- lip 

I V,J(x)1 ~ f h'(x - y)lf( y)IP dy f h'(x - y) dy 
n n 

so that 

We mention here that Lemma 7.12 may be strengthened in the sense that V" 
maps U(O) continuously into U(O) providedp> 1 and b~ll. The proof requires a 
well known integral inequality of Hardy and Littlewood (see [HL]). However, 
Lemma 7.12 is adequate for our purposes here. Observe that whenp>Il- I , V" 
maps U(O) continuously into L ""(0). Let us examine now the intermediate case 
P=Il- I . 

Lemma 7.13. Let fe U(O) and g= Vllpf Then there exist constants ci and c2 

depending only on nand p such that 

(7.35) fexp[cII~lIpJ dx~c21.QI, p'=pJ(p-I). 
n 

Proof From Lemma 7.12, we get for any q~p 

so that 

flgl 4 dx~ql+4IP·w:IP·I.Qlllfll: 
n 

and hence for q ~p-l 

flgl P'4 dx ~p'q(w"p'qllfllr)41.Q1. 
n 
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Consequently 

N I ( lui )P'k , (p'W,,)k kk [~k! e111!llp dx~p 10/ L ef' (k-l)!' No=[p] 

The series on the right hand side converges provided er > ew,JJ', whence by the 
monotone convergence theorem and (7.8) the desired estimate (7.35) follows. 0 

The next lemmas serve to clarify the connection between weak derivatives and 
potentials of the above type. 

Lemma 7.14. Let u E W~·l(O). Then 

(7.36) u(x) =_1_ f (Xj - Yj)Dju(y) dy a.e. (U). 
nw Ix- vi" "n . 

Proof Suppose that u E e~(U) and extend u to be zero outside U. Then, for any 
w with Iwl = I, 

ac 

u(x) = - f D,u(x + rw) dr. 
o 

Integrating with respect to w, we obtain 

ac 

u(x) = - n~ f f D,u(x+rw) dr dw 
.. 0 Iwl=l 

and (7.36) follows from Lemma 7.12 and the fact that eMU) is dense in 
Wk 1(0). 0 

Note that by means of the formula (7. 16) forintegration by parts, the Newtonian 
potential representation for e~(O) functions, equation (2.17), is deducible 
from formula (7.36). Also we obtain for U E WJ·l(U) 

(7.37) 
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Combining Lemma 7.12 and inequality (7.37) we obtain immediately the im
beddings Wci·P(O) -+ Lq(D) for p-I _q-I <n- I , which is almost the conclusion of 
Theorem 7.10. In fact, this weaker version would be adequate for the purposes of 
this book. But also combining Lemma 7.13 and (7.37), we obtain a sharpening 
of the case p=n expressed by the following theorem. 

Theorem 7.15. Let uE Wci ,ft(D). Then there exist constants ci and c2 depending 
only on n, such that 

Remark. The estimate (7.37) is readily generalized to higher order weak deriva
tives. One obtains then for u E W~' 1(0), 

(7.39) 

and using Lemma 7.13 we have an extension of Theorem 7.15. Namely there exist 
constants c1 and c2 depending only on nand k such that ifu E W~'P(D) with n=kp, 
then 

(
lui )P/(P- I) 

(7.40) I exp cIllUullp dx~c2IDI. 

The case p > n of the Sobolev imbedding theorem may be sharpened through 
the following lemma. 

Lemma 7.16. Let D be convex and u E WI. 1(0). Then 

d
ft f (7.41) lu(x) - usl ~ niSI Ix - yll-ftIDu(Y)1 dy a.e. (D), 

where 

a 

Us = I ~ I f u dx, d = diam D, 

s 

and S is any measurable subset ojD. 

Proof By Theorem 7.9, it is enough to establish (7.41) for U E CI(O). We then 
have for x, y E D, 

Ix-,I 

u(x)-u(y)= - f D,u(x+rw) dr, 
o 

y-x 
w=--' 

Iy-xl 
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Integrating with respect to y over S, we obtain 

Writing 

Ix-yl 

ISI(u(x) - us) = - f dy f D,u(x + rw) dr. 
s 0 

V(x) = {ID,U(X)I. x E 0 
O. x;o 

we thus have 

1 
lu(x) - usl ~]Sf 

00 

f dy f V(x + rw)dr 

Ix-yl<d 0 

00 d 

= I~I f f f V(x + rw)p"-l dp dw dr 

o Iwl= 1 0 

00 

= ~ f f V(x + rw)dwdr 
niSI 

o Iwl= 1 

d" f = niSI Ix - yll-"ID,u(Y)1 dy. 0 
Q 

We can now prove the imbedding theorem of Morrey. 
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Theorem 7.17. Let u E W~·P(Q),p>n. Then u E CY(U), where y= I-nip. Further
more,for any ball B=BR , 

(7.42) osc u~ CRY II DUllp, 
QI"IBR 

where C=C(n, pl. 

Proof. Coupling the estimates (7.41) and (7.34) for S = 0 = B, q = 00 and 
Jl. = n - 1, we have 

lu(x)-usl~C(n,p)RYIiDulip a.e. (0 11 B). 

The result then follows since 

lu(x) - u( y)1 ~ lu(x) - uBI + lu( y) - us! 

~ 2C(n. p)RYII Dull p a.e. (0 11 B). 0 
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Combining Theorems 7.10 and 7.17, we have for UE W~·P(Q) and p>n the 
estimate 

Further, the results of Theorems 7.10, 7.15, 7.17 may be summarized by the 
following diagram 

Lnp/(n-p)(u), 

/ 
W ~. P(U}-+ LIP(U), 

'\. 

p<n 

n 
A=I--, p>n 

p 

where LIP(O) denotes the Orlicz space with defining function cpo (See [TR 2] for a 
more explicit definition of LIP(Q).) 

For the derivation of many of the apriori estimates in this book weaker forms of 
the Sobolev inequalities known as the Poincare inequalities are sufficient. From 
Lemmas 7.12 and 7.14 we have for U E W~"(Q), I ~p< 00 

while from Lemmas 7.12 and 7.16 we have, for U E W 1"(Q) and convex U, 

(7.45) Ilu - uslI, ~ (~nlr-l/ndIlIiDUllp, d = diam U. 

7.9. The Morrey and John-Nirenberg Estimates 

We proceed now to a consideration of the potential operators V" on a different class 
of spaces in order to prove useful imbedding results due to Morrey (Theorem 7.19) 
and John and Nirenberg (Theorem 7.21). Namely, the integrable function/is said 
to belong to M'(U), I ~p~ 00, if there exists a constant K such that 

(7.46) f Ifldx~KRn(1-1/') 
a" BR 

for all balls B R' We define the p norm II f II M'(a) to be the infimum of the constants 
Ksatisfying (7.46). It is easy to see that LP(Q)cM'(U), L 1(U)=M 1(Q), L'Xl(Q) = 
MOO(U). Instead of considering in detail the action of the operators V~ on arbitrary 
M '(Q) spaces, it will be enough to limit ourselves to the cases p ~ I" - 1. 
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Lemma 7.1S. LetfE MP(D), IJ=p-1 <Jl.. Then 

(7.47) I V,J(x)1 ~ ~ -~ (diam .Q)"CrM IIfII MP(Sl) a.e. (D). 
Jl.-u 

Proof Extendfto be zero outside .0 and write 

v(p) = f If( y)1 dy. 

Then 
BpCx) 

JV,J(X)I~fp"CIl-l)lf(Y)ldy, p=lx-YI 
Q 

d 

= f p"CIl-I)V'(p) dp, d=diam .0 

° 
d 

=d"CIl-I)v(d)+n(l-Jl.) f p"(Il-I)-IV(p) dp 

° 

The following theorem now generalizes Theorem 7.17. 

Theorem 7.19. Let u E Wi, 1(.0), and suppose there exist positive constants K, 
IX (IX~ 1) such that 

(7.48) fIDuldx~KR"-I+.2 forallballsBRc.Q. 
BR 

Then u E CO . .2(D), and for any ball BR c.Q 

(7.49) osc u~CKR.2, 
BR 

where C=C(n, IX). If .Q=D n IR~ = {x ED I x">O} for some domain DclR" and 
(7.48) holds for all balls BRcD, then u E CO . .2(Q n D) and (7.49) holds for all 
BRcD. 

Theorem 7.19 is obtained by combining Lemma 7.16 (S = .0) with Lemma 7.18. 
As a further consequence of Lemma 7.18 we have 

Lemma 7.20. Let f E M P(D) (P> 1) and g = VJ, Jl. = p - I. Then there exist con
stants C I and c 2 depending only on nand p such that 

(7.50) f expG~l) dx ~C2 (diam D)" 
Q 

where K= IIfIIMP(Q)' 
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Proof Writing for any q~ 1 

we have by Holder's inequality 

Ig(x)1 ~ (V"/I/I/DI/I/( V,,+ ,,/1/111>1 - 1/1/. 

By Lemma 7.18 

V 1/1~(l-Jl)q d"IHK d=diamU ,,+,,/1/ .... Jl ' 

~(p-l)qd"IHK. 

Also by Lemma 7.12 

Hence 

f V"/I/I/I dx~pqw! -'/HIUI'/HII/II, 
a 

~pqw"Kd"(1-I/P+ I/H). 

flull/ dx~p(p-I)I/-'w"q' d"KI/ 
a 

~p'w"{(p-l)qK}1/ dR, pi =p/(p_I). 

Consequently 

N Igl'" ~ I "N (p-I)"'m'" L, "'dx .... pw.d L -- --I I ",=0 m.(cIK) ",=0 CI m. 

Letting N -+ 00, we thus obtain (7.50). 0 

Combining Lemmas 7.16 and 7.20 we then get 

7. Sobolev Spaces 

Theorem 7.lI. Let u E WI,I(U) where U is convex, and suppose there exists a 
constant K such that 

(7.51) f IDul dx~ KR"-I lor all balls BR • 

anBa 

Then there exist positive constants 0"0 and C depending only on n such that 

(7.52) f exp(ilu-uol) dx~C (diam U)" 
a 
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7.10. Compactness Results 

Let ENI be a Banach space continuously imbedded in a Banach space EN2 • Then 
EN 1 is compactly imbedded in EN 2 if the imbedding operator I: EN 1 -+ EN 2 is compact, 
that is, if the images of bounded sets in EN 1 are precompact in EN 2' Let us now prove 
the Kondrachov compactness theorem for the spaces W~·P(.Q). 

Theorem 7.22. The spaces W~·P(U) are compactly imbedded (i) in the spaces U(.Q) 
for any q<np/(n-p), i/p<n, and (ii) in eO(D), i/p>n. 

Proof Part (ii) is a consequence of Morrey's theorem (Theorem 7.17) and 
Arzela's theorem on equicontinuous families of functions. Let us thus concentrate 
on part (i) and prove it initially for the case q= I. Let A bea bounded set in W~·P(.Q). 
Without loss of generality we may assume that A c eMU) and that Ilull1.p;a :E; 1 
for all u EA. For h>O, we define A~= {u~ I u E A} where u~ is the regularization 
of u (see formula (7.13». It then follows that the set A~ is precompact in L 1(.Q). 
For ifu E A we have 

and 

lu~(x)l:E; f p(z)lu(x - hz)1 dz:E; h- n sup pllulll 

I%I~ 1 

IDu~(x)1 :E; h- 1 f IDp(z)IIu(x - hz)1 dz:E; h- n - 1 sup IDp11lu1l 1 

I%I~ 1 

so that A~ is a bounded, equicontinuous subset of eO(O) and hence precompact 
in eo(O) by Arzela's theorem, and consequently also precompact in Ll(.Q). Next 
we may estimate for u E A 

lu(x)-u~(x)l:E; f p(z)lu(x)-u(x-hz)1 dz 
I%I~ 1 

~I'I z 
:E; f p(z) f ID,u(x-rw)1 drdz, w=lzl; 
Izl~ 1 0 

hence integrating over x we obtain 

f lu(x) - u~(x)ldx:E; h f IDul dx:E; h lUll-liP. 
·0 0 

Consequently u~ is uniformly close to u in L I(U) (relative to A). Since we have 
shown above that A~ is totally bounded in L 1(.Q) for all h >0, it follows that A 
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is also totally bounded in L1(U) and hence precompact. The case q=1 is thus 
established. To extend the result to arbitrary q<np/(n-p), we estimate by (7.9) 

A 1-.1. h 1 (! 1) I Ilull,:E;; IlulltilulillPilII-p) were A+(I-).) \p-n =q 
:E;; IluIl1(C!lDullp)1-A by Theorem 7.10. 

Consequently a bounded set in W~·P(U) must be precompact in L'(U) for q> I 
and the theorem is proved. 0 

A simple extension of Theorem 7.22 shows that the imbeddings 

np 
for kp<n, q<--k

n- p 

n 
forO:E;;m<k--

p 

are compact and that Wi,P(D) may be replaced by W",P(D) for certain D; see 
Theorem 7.26; Problem 7.14. 

7.11. Difference Quotients 

In partial differential equations, the weak or classical differentiability of functions 
may often be deduced through a consideration of their difference quotients. Let u 
be a function on a domain D in A" and denote by ej the unit coordinate vector in 
the XI d.irection. As in Chapter 6, we define the difference quotient in the direction 
ejby 

(7.53) 

The following basic lemmas pertain to difference quotients off unctions in Sobolev 
spaces. 

Lemma 7.D. Let u E W 1• p(U). Then AIIU E LP(D') for any D'e: e:D satisfying 
h<dist (D', oD), and we have 

IIAlluIlLP(Q,):E;; II Dju Il L P(Q)' 

Proof. Let us suppose initially that u E C 1(U) n W 1,P(D), Then 

II u(x+hej)-u(x) 
A u(x)= h 

I II 

='h f D ju(x 1,··" x j - 1' xj+e, Xi+1"'" XII) de 
o 
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so that by Holder's inequality 

and hence 

h 

ILlhU(X)iP~~ fIDju(xp ... , Xj_P xj+e, x j+ p ... , x")iP de, 
o 

h 

f ILihul P dx ~~ f f IDjul P dx de ~fIDjUIP dx. 
U' 0 Bh(U') a 
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The extension to arbitrary functions in Wi,P(D) follows by a straight-forward 
approximation argument using Theorem 7.9. 0 

Lemma 7.24. Let u E U(Q), I <p < 00, and suppose there exists a constant K 
such that LlhuEU(D') and "Llhu"LP(a,)~Kfor all h>O and D'ccD satisfying 
h<dist (D', aQ). Then the weak derivative Dju exists and satisfies IIDju"LP(a)~K. 

Proof By the weak compactness ofbound~d sets in U(D'), (Problem 5.4), there 
exists a sequence {hm} tending to zero and a function v E U(Q) with "v"p~K 
satisfying for all q> E CJ(Q) 

f q> Llhmu dx -+ f q>v dx. 
a a 

Now for hm <dist (supp q>, aQ), we have 

f q> Llhmu dx= - f U LI-hmq> dx -+ - f u Djq> dx. 
a a a 

Hence 

f q>v dx= - f uDjq> dx 
a a 

7.12. Extension and Interpolation 

Under certain hypotheses on the domain D, functions in Sobolev spaces Wk,P(D) 
may be extended as functions in Wk,P(IR"). We commence this section with a basic 
extension result, analogous to Lemma 6.37, which will be used both to improve 
previous imbedding results and to establish interpolation inequalities for Sobolev 
space norms. 



170 7. Sobolev Spaces 

lbeorem 7.25. Let a be a C"-l,l domain in ~", k ~ 1. Then (i) CO(D) is dense in 
W k, pea), 1 ~ p < 00, and (ii)for any open set a' :J :J Q there exists a bounded linear 
extension operator Efrom W",P(Q) into W~,p(a') such that Eu = u in a and 

(7.54) IIEull",p;a' ~ qull",p;a 

for all u E wk, P(Q) where C = C(k, a, 0'). 

Proof. We observe, by virtue of Lemmas 6.37 and 7.4, that assertions (i) and (ii) 
are equivalent. Let us first consider the density result (i) for the half-space ~~ = 
{x E ~Ix" > OJ. In this case it is readily shown that the translated mollifications of 
u, given by 

(7.55) v,,(x) = u,,(x + 2he,,) 

= h-n f u(y)pe + 2~e" - y) dy, h > 0, 

Yn>O 

converge to u in wt.P(~+) as h -+ O. Accordingly an extension Eo u of u to all of~" 
may be defined by the formula in Lemma 6.37, namely, 

(7.56) {

U(X) 

Eou(x) = " 
i~CiU(X', -xJi) 

for x" > 0, 

for x" < 0 

where CI' ••. , Ct are constants determined by the system of equations 

" L Ci( -1/i)'" = 1, m=O, ... ,k-1. 
i=l 

If u E cao(~~) n wt.P(~~) it follows that Eou E C"-l.l(~") n wt.P(~) and, 
moreover, 

where C = C(k). Therefore, by approximation we obtain that Eo maps W"'P(~+) 
into wt,P(~) and satisfies (7.57) for all u E wt.P(~+). 

Having treated the half-space case, let us now suppose that 0 is a C"-l.l 
domain in ~". According to the definition in Section 6.2, there exist a finite number 
of open sets OJ C O',j = 1, ... , N, which cover ao, and corresponding mappings "'j of OJ onto the unit ball B = Bl(O) in ~" such that 

(i) "'J{Oj nO) = B+ = B n W+; 
(ii) '" jOj n ao) = B n a~~ ; 
(iii) "'lEC"-I.I(O), ",;1 EC"-I,I(B). 
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We let Do C cD be a subdomain of D such that {Dj},j = 0, ... , N, is a finite 
covering of D, and let Y/j,j = 0, ... , N be a partition of unity subordinate to this 
covering. Then (Y/ju) a "'; I E W"'P(IR~) (Problem 7.5) and hence EO[(Y/ju) a "'j-I] E 
Wk,P(IR"), whence EO[(Y/ju) a "'j-I] a "'j E W~P(D),j = 1, ... , N,sincesupp Y/j c Dj, 
Thus the mapping E defined for U E W",P(Q) by 

N 

(7.58) Eu = UY/o + LEo[(Y/jU)o",;I]o"'j 
j= I 

satisfies Eu E W~'P(D'), Eu = u in D and 

IIEullk,p;u' ~ qull",p;q 

where C = C(k, N, "'j' Y/j) = C(k, D, D'). Furthermore (EU)h --. u in Wk,P(D) as 
h --. 0. 0 

By combining the case k = 1 in Theorem 7.25 with our previous imbedding 
results, Theorems 7.10, 7.12 and 7.22, we obtain corresponding imbedding results 
for the Sobolev spaces Wi , P(D) for Lipschitz domains D. By iteration we then have 
the following general imbedding theorem for Wk,P(D). 

Theorem 7.26. Let D be a CO,I domain in IR". Then, 
(i) if kp < n, the space Wk, P(D) is continuously imbedded in U·(D), p* = 

np/(n - kp), and compactly imbedded in U(D)for any q < p*; 
n 

(ii) if ° ~ m < k - - < m + 1, the space Wk,P(Q) is continuously imbedded 
p 

in Cm,«(U), 0( = k - nip - m, and compactly imbedded in Cm,Il(U) for any 
P < 0(. 

We turn now to interpolation inequalities which we treat initially for the spaces 
W~'P(Q). 

Theorem 7.27. Let UE W~P(Q). Then for any e > 0, ° < IPI < k, 

(7.59) IIDllullp;u ~ ellullk,p;u + Cellll/(IIlI-k)llullp;u, 

where C = C(k). 

Proof. We establish (7.59) for the case I PI = 1, k = 2 which is needed in Chapter 9. 
A suitable induction argument yields the stated result for arbitrary p, k. 

Let us first suppose u E CMIR) and consider an interval (a, b) oflength b - a = e. 
For x' E (a, a + e/3), x" E (b - (e/3), b), we have, by the mean value theorem, 

I u'(x) I = I u(x'~ - u~x") I 
x - x 

3 
~ - (I u(x') I + I u(x")I) 

e 
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for some X E (a, b). Consequently for any x E (a, b), 
b 

lu'(x)1 ~ ~(IU(XI)I + lu(x")1) + f'u"" 
a 

7. Sobolev Spaces 

Integrating with respect to x' and x", over the intervals (a, a + e/3), (b - e/3, b), 
respectively, we then obtain 

b b 

I u'(x) I ~ f'u'" + :~ f 'u" 
a a 

so that by Holder's inequality 

b b 

lu'(x)IP ~ 2P-1{ep - 1 jlu"IP + ~~~: f ,u,P} 
a a 

Hence, integrating with respect to x over (a, b) we have 

b b b 

f'UI(X)IP ~ 2P-l{ep fll/I,P + CeSY f,u,P} 
a a a 

Consequently if we subdivide IR into intervals of length 8, we obtain by adding all 
such inequalities 

which is the desired result in the one-dimensional case. To extend to higher dimen
sions we fix i, 1 ~ i ~ n, and apply (7.60) to u E C~(D) regarded as a function of Xi 

only. By successive integration over the remaining variables we thus obtain 

so that 

for C = 36. 0 

By combining Theorems 7.25 and 7.27, we obtain interpolation inequalities for 
the Sobolev spaces W1,P(D). 
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Theorem 7.28. Let Q be a C1,1 domain in ~" and u E W",P(Q). Then for any 
e > 0, ° < I PI < k, 

(7.61) IIDfJullp;a ~ ellull",p;a + CelfJl/<lfJl-1c)lIullp;a 

where C = C(k, Q). 

Alternative derivations of interpolation inequalities are treated in Problems 
2.15, 7.18 and 7.19. The density, extension, imbedding, and interpolation results of 
Theorems 7.25, 7.26 and 7.28 are all valid under less restrictive hypotheses on the 
domains Q; (see [AD]). 

Notes 

For related material on Sobolev spaces the reader is referred to the books [AD], 
[FR], [MY 5] and [NE]. We have followed the custom of referring to the spaces of 
this chapter as Sobolev spaces although various notions of spaces of weakly 
differentiable functions were used prior to Sobolev's work [SO 1]; (in this regard 
see [MY 1] and [MY 5]). The process of mollification or regularization appeared 
in Friedrich's work [FD 1]. The density theorem, Theorem 7.9, is due to Meyers 
and Serrin [MS 2]. The Sobolev inequalities, Theorem 7.10, were essentially 
proved by Sobolev [SO 1, 2]; we have followed the proof of Nirenberg [NI 3] for 
the case p < n. The Holder estimates, Theorems 7.17 and 7.19 were derived by 
Morrey [MY 1]. Theorem 7.21 is due to John and Nirenberg [IN]; our proof is 
taken from [TR 2] where also the estimate Theorem 7.15 appeared. The compact
ness result, Theorem 7.22, is due to Rellich [RE] in the case p = 2 and to Kondrachov 
[KN] for the general case. 

Problems 

7.1. Let Q be a bounded domain in IR". If u is a measurable function on Q such 
that lulP E L I(Q) for some p E IR, we define 

[ 1 ]I/P 
~ p(u) = IDI f lul P dx . 

a 

Show that: (i) lim ~p(u)=suplul; 
P'" 00 a 

(ii) lim ~p(u)=influl; 
P'" -00 a 

(iii) ~i~ ~p(u)=exp[I~1 [log lui dx J. 
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7.2. Show that a function u is weakly differentiable in a domain D if and only if 
it is weakly differentiable in a neighborhood of every point in D. 

7.3. Let ex, P be multi-indices and u be a locally integrable function on a domain 
D. Show that provided any two of the weak derivatives D"+Pu, D"(DPu), DP(D"u) 
exist, they all exist and coincide a.e. (a). 

7.4. Derive the product formula (7.18). (Hint: consider first the case, u E W'(D), 
VE C'(D». 

7.S. Derive the formula (7.19), and show that it remains valid if we assume only 
'" E Co. I(D), ",-I E CO,I(.O). 

7.6. Let D be a domain in R" containing the origin. Show that the function ')' 
given by y(x)=lxl- z belongs to W"(D) provided k+ex<n. 

7.7. Let D be a domain in R". Show that a function u E CO, I(a) if and only if 
u is weakly differentiable with locally bounded weak derivatives. 

7.8. Let D be a domain in R". Show that a function u is weakly differentiable in 
D if and only if it is equivalent to a function u that is absolutely continuous on 
almost all line segments in D parallel to the coordinate axes and whose partial 
derivatives, (which consequently exist a.e. (D», are locally integrable in D. (See 
[MY 5], p. 66). Derive from this characterization the product formula and chain 
rule for weak differentiation. 

7.9. Show that the norms (7.22) and (7.23) are equivalent norms on W",P(D). 

7.10. Prove that the space W",P(a) is complete under either of the norms (7.22), 
(7.23). 

7.11. Let D be a domain whose boundary can be locally represented as the graph 
of a Lipschitz continuous function. Show that Coo(D> is dense in W",P(D) for 
1 ~ p < 00, k ;?1; 1, and compare this result with the density result in Theorem 7.25. 

7.12. Let D be a Co, I domain. For any function U E Wi, P(D) and 1 ~ p < n, derive 
the Sobolev-Poincare inequality 

Ilu - uollnp/(n-p);O ~ CIIDullp;o 

(where C is independent of u) by a contradiction argument based on the compactness 
result of Theorem 7.26. 

7.13. Deduce from Theorem 7.19 the corresponding global result. Namely let 
u E W I(D), aD E co, I and suppose there exist positive constants K, ex (ex < 1) such 
that 

f IDul dx~ KJr'-1 +II for all balls BRc Rn. 

BR 
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where C= C(n, IX, Q). 

7.14. Let Q be a bounded domain for which an imbedding 

is valid. Show that the imbedding 

is compact for any q<p*. 

7.1S. Let Q be a domain in R". The total variation of a function u e Ll(U) is 
defined by 

SIDul=suP {S udivv I veq(U), Ivl~ I}. 
a a 

Show that the space BV(Q) of functions of finite total variation is a Banach space 
under the norm 

IluIIBV(1J)= Ilull l + SIDul, 
a 

and that WI. 1(Q) is a closed subspace. 

7.16. Let u e BV(U). By invoking the regularization of u and appropriately 
modifying the proof of Theorem 7.9, show that there exists a sequence {ulft} C 

COO(Q) n W1.1(Q) such that ulft -+ u in L 1(Q) and 

SIDulftl-+ SIDul. 
a a 

7.17 Let Q be a bounded domain for which the Sobolev imbedding 

is valid. Show that also 
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and furthermore that the imbedding 

BV(Q) -+ U(Q) 

is compact for any q < n/(n - I). 

7.1S. Derive Theorem 7.27 for p ~ 2 from Green's first identity (2.10); (see 
Problem 2.15). 

7.19. Let Q be a CO,l domain. Derive the interpolation inequality (7.61) in the 
weaker form 

(C. independent of u), by means of a contradiction argument based on the com
pactness result of Theorem 7.26. 

7.20. Using regularization, show that locally integrable solutions of Laplace's 
equation (in the sense of Problem 2.8) are smooth and hence deduce the validity of 
the interior estimates in Chapter 4 for such solutions of Poisson's equation. 

7.21. Using Morrey's inequality (7.42), prove that functions in the Sobolev 
space Wl,P(Q), where p > n, are classically differentiable almost everywhere in Q. 



Chapter 8 

Generalized Solutions and Regularity 

This chapter treats linear elliptic operators having principal part in divergence 
form under relatively weak smoothness assumptions on the coefficients. We 
consider operators L of the form 

whose coefficients ali, bi, ci, d (i, j= 1, ... , n) are assumed to be measurable 
functions on a domain 0 c: R". An operator L of the general form (3.1) may be 
written in the form (8.1) provided its principal coefficients ail are differentiable. 
The Hilbert space approach developed here can then be viewed as providing an 
alternative existence theory to that of Chapter 6. On the other hand, if in (8.1) the 
coefficients aii and bi are differentiable and the function u E C2(0), then L may be 
written in the general form (3.1) so that the theory of Chapter 6 would apply. The 
divergence form however has the advantage that the operator L may be defined for 
significantly broader classes off unctions than the class C2(O). Indeed, if we assume 
that the function u is only weakly differentiable and that the functions ali D p + biu, 
ciD/u+du, i= 1, ... , n are locally integrable, then, in a weak or generalized sense, 
u is said to satisfy Lu=O (~O, ~O) respectively in 0 according as 

(8.2) l!(u, v)= f {(aiiDp + biu)D/v-(ciDiu+du)v}dx =0 (~O, ~O) 
a 

for all non-negative functions v E CMO). Provided the coefficients of L are locally 
integrable, it follows from the divergence theorem (2.3) that a function u E C2(O) 
satisfying Lu = 0 ( ~ 0, ~ 0) in the classical sense also satisfies these relations in the 
generalized sense. Moreover, if the coefficients ali, bi have locally integrable 
derivatives, then a generalized solution u E C2(O) is also a classical solution. 

LetP, g, i=l, ... ,n be locally integrable functions in O. Then a weakly 
differentiable function u will be called a weak or generalized solution of the 
inhomogeneous equation 

(8.3) Lu=g+Ddi 

in 0 if 
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(8.4) l?(u,v)=F(v)= SUiDiv-gv)dx 'VVEq(Q). 
D 

As above we see that classical solutions of (8.3) are also generalized solutions and 
that a C2(Q) generalized solution is also a classical solution when the coefficients of 
L are sufficiently smooth. 

Our plan is to study the generalized Dirichlet problem for the equation (8.3). 
The sense in which this problem is naturally posed depends on the coefficients of 
L. We shall assume throughout that L is strictly elliptic in 0; that is, there exists a 
positive number A. such that 

(8.5) aii(x)'i'i~A.1'12, "Ix EO, ,E IR". 

We also assume (unless stated otherwise) that L has bounded coefficients; that is 
for some constants A and v ~O we have for all x EO 

(8.6) 

We point out however that a satisfactory theory can still be developed if these 
conditions are relaxed [TR 7]. A function u belonging to the Sobolev space 
WI, 2(0) will then be called a solution of the generalized Dirichlet problem: 
Lu=g+D;!i, u=cp on 00, if u is a generalized solution of equation (8.3), cp E 

WI. 2(0) and u-cp E W~·2(0). 
The functions v E q(Q) that occur in the formulations (8.2) and (8.4) are often 

referred to as test functions. Note that by condition (8.6) we have 

(8.7) Il?(u, v)l~ S{ldiDpDjvl+WuDjvl+lciVDjul+lduvl} dx 
D 

~ Cllullw'.2(D) IIvllw'.2(D) by Schwarz's inequality 

Hence for fixed u E WI, 2(Q), the mapping v -+ l?(u, v) is a bounded linear func
tional on W~' 2(0). Consequently the validity of the relations (8.2) for v E q(O) 
implies their validity for v E W~' 2(0). 

The estimate (8.7) is also significant from the point of view of the existence 
theory for (8.3) as it shows that the operator L defines through (8.2) a bounded bi
linear form on each of the Hilbert spaces W1.2(Q), W~·2(Q). For flxed u E W1• 2(Q), 
Lu may be defined as an element of the dual space of W~' 2(0) by setting Lu(v) = 
l?(u, v), v E W~' 2(0). By virtue of the Riesz representation theorem, W~' 2(0) may 
be identified with its dual, and consequently the operator L induces a mapping 
Wi. 2(0) -+ W~' 2(0). As we shall show presently, the solvability of the Dirichlet 
problem for equation (8.3) is readily reduced to the invertibility of this mapping. 

The alternative approach to the linear Dirichlet problem described above is by 
no means the only important contribution of this chapter. The pointwise estimates 
developed in Sections 8.6, 8.9 and 8.10 are crucial for the subsequent development 
of the theory of quasilinear equations in Part II. For the purposes of this applica
tion, the reader need only consider C1(Q) subsolutions or supersolutions of equa
tion (8.3) and moreover take bj=cj=d=O in (8.1), that is v=O in (8.6). 
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8.1. The Weak Maximum Principle 

The classical weak maximum principle, Theorem 3.1, has a natural extension to 
operators in divergence form. In order to formulate it, we require a notion of 
inequality at the boundary for functions in the Sobolev space Wi, 2(Q). Namely, let 
us say that u E WI,2(Q) satisfies u~O on oD if its positive part u+ = max {u, O} E 
W~·2(Q). If u is continuous in a neighborhood of oD, then u satisfies u~O on 
oD if the inequality holds in the classical pointwise sense. Other definitions 
of inequality at oD follow naturally. For example: u ~ 0 on oD if -u ~ 0 on 
oD; u~v E Wl,2(Q) on oD ifu-v~O on oD; 

sup u=inf {klu~k on oD, k E ~}; 
au 

infu= -sup (-u). 
au au 

For the classical weak maximum principle of Corollary 3.2, we imposed the 
condition that the coefficient of u in (3.1) is non-positive. The corresponding 
quantity in (8.1) is Dibi + dbut since the derivatives Dl need not exist as functions, 
the non-positivity of this term must be interpreted in a generalized sense, that is, 
we assume 

(8.8) f (dv-biDiv) dx ~O 'v'v~O, v E C~(D). 
u 

Since bi and d are bounded, inequality (8.8) will continue to hold for all non
negative v E W~,I(Q). 

We can now state the following weak maximum principle. 

TheoremS.I. LetuE Wl,2(Q)satisfyLu~0(~0)inD. Then 

(8.9) sup u~sup u+ (inf u ~ inf u-). 
u au u au 

Proof IfuE W 1,2(Q),VE W~·2(Q)wehaveuvE W~·I(D)andDuv=vDu+uDv 
(Problem 7.4). We may then write the inequality £(u, v)~O in the form 

f {djDjuDiV-W+ci)vDiu} dx~ f {duv-biDi(uv)} dx~O 
u u 

for all v ~ 0 such that uv ~ 0, (by (8.8». Hence, by the coefficient bounds (8.6), 
we have 

(8.10) J aijDjuDiv dx ~ 2Av J vlDul dx 

for all v~O such that uv~O. In the special case bi+Ci=O, the proof is immediate 
by taking v=max {u-I, O} where I=sup u+. For the general case, we choose k to 

au 
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satisfy I ~ k < sup u, and we set v = (u - k)+. (If no such k exists we are done.) By 
Q 

the chain rule, Theorem 7.8, we have v E wd' 2 (.0) and 

DV={DU for u>k (i.e. for v#O), 
o for u~k (i.e. for v=O). 

Consequently we obtain from (8.10) 

r = supp Dv c supp v, 

and hence by the strict ellipticity of L, (8.5), 

flDVl2 dx ~ 2v f vlDvl dx ~ 2v II v 112;T II Dv liz, 
Q r 

so that 

Let us now apply the Sobolev inequality, Theorem 7.10, for n ~ 3, to obtain 

where C=C(n, v), so that 

Isupp Dvl ~ C- n• 

In the case n=2, an inequality of the same form with C=C(n, v, IQI) also follows 
from the Sobolev inequality by replacing 2n/(n - 2) by any number greater than 2. 
Since these inequalities are independent of k they must hold as k tends to sup u. 

u 
That is, the function U must attain its supremum in .0 on a set of positive measure, 
where at the same time Du = 0 (by Lemma 7.7). This contradiction ofthe preceding 
inequality implies sup u ~ I. 0 

Q 

The uniqueness of solutions of the generalized Dirichlet problem for equation 
(8.3) is an immediate consequence of Theorem 8.1. 

Corollary 8.2. Let u E W~·2(.Q) satisfy Lu=O in.Q. Then u=O in.Q. 

For alternative conditions to inequality (8.8), the reader is referred to Problem 
8.1; see also [TR II]. 
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8.2. Solvability of the Dirichlet Problem 

The main objective of this section is the following existence result. 

Theorem 8.3. Let the operator L satisfy conditions (8.5), (8.6) and (8.8). Then for 
q> E Wl,2(0) and g, PEL 2(0), i = I, ... , n, the generalized Dirichlet problem, 
Lu=g+DJi in a, u=q> on aa is uniquely solvable. 

Proof Theorem 8.3 will be derived as a byproduct of a Fredholm alternative for 
the operator L. Let us first reduce the Dirichlet problem to the case of zero 
boundary values. Setting W=U-q>, we obtain from (8.3) 

Lw=Lu-Lq> 

= 9 - ciDiq> - dq> + Di(p - aii DlP - bill') 

=n+DJi 

and from our conditions on Land q>, we clearly have n, PEL 2(0), i = I, ... , n 
and w E W~,2(a). Therefore it suffices to prove Theorem 8.3 for the case q>=O. 

Let us writeJt' = W~,2{a), g=(g,f 1, ••• ,r) and F(v)= - f<gv-PDiv)dx 
a 

for v E Jt'. Then since 

we have F E Jt'*. If the bilinear form l! defined by (8.2) were coercive on Jt' as well 
as bounded, we could conclude immediately the unique solvability of the Dirichlet 
problem for L from Theorem 5.8. Related to the coercivety of l! is the following. 

Lemma 8.4. Let L satisfy conditions (8.5) and (8.6). Then 

(8.11) 

Proof 

l!(u, U)~~ flDul 2 dx- Ay2 f u2 dx. 
a a 

l!(u, u)= f (aiiDiuDp+W-d)uDiU-du2) dx 
a 

~ f (A.IDuI 2 -~ IDul 2 _Ay2U2) dx by Schwarz's inequality, 
a 

=~ flDul 2 dx- Ay2 f u2 dx. 0 
a a 
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For a E IR, let us now define the operators L" by L"u = Lu - au. By Lemma 8.4 
we see that the associated forms ~" will be coercive if either a is sufficiently large 
or 1.01 is sufficiently small. To proceed further, we define an imbedding I: Jf -+ Jf* 
by 

(8.12) lu(v) = f uv dx, v E Jf. 
D 

Then we have 

Lemma 8.S. The mapping I is compact. 

Proof We may write 1= 11/2 where 12: Jf -+ L2(.Q) is the natural imbedding and 
/1: L2(.Q) -+ Jf* is given by (8.12). By the compactness result, Theorem 7.22'/2 is 
compact (also if p=n=2) and, since /1 is clearly continuous, it follows that / is 
compact. 0 

To proceed further we choose a 0 so that the form ~ao is bounded and coercive 
on the Hilbert space Jf. The equation Lu=Ffor u E Jf, FE Jf* is then equivalent 
to the equation 

By Theorem 5.8, L~ I is a continuous, one-to-one mapping of Jf* onto Jf and 
so, applying it to the above equation, we obtain the equivalent equation 

(8.13) 

The mapping T = - a oL;o I I is compact by Lemma 8.5 and hence by the Fredholm 
alternative, Theorem 5.3, the existence of a function u E Jf satisfying equation 
(8.13) is a consequence of the uniqueness in Jf of the trivial solution of the equation 
Lu=O. Theorem 8.3 thus follows by the uniqueness result, Corollary 8.2. 0 

A description of the spectral behavior of the operator L follows from Theorem 
5.11. For let us define the formal adjoint L * of L by 

(8.14) 

Since ~*( u, v) = ~(v, u) for u, v E Jf = W b' 2(.Q) it follows that L * is also the adjoint 
of L in the Hilbert space Jf. By replacing L with L" in the above argument, we see 
that the equation L"u=Fwill be equivalent to the equation u+(ao-a)L;ol/u= 
L;olFand that the adjoint T: of the compact mapping T,,=(ao-a)L~IIis given 
by T: =(ao -a)(L:o)-1 I. We can then apply Theorem 5.11 to obtain the following 
result. 

Theorem 8.6. Let the operator L satisfy conditions (8.5) and (8.6). Then there exists 
a countable, discrete set E c IR such that if a ~ E, the Dirichlet problems, L"u, 
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L:u = g + DJi, U = qJ on au, are uniquely solvable for arbitrary g, PEL 2(U) and 
qJ E W I ,2(U)./f(1 E E, then the subspaces of solutions of the homogeneous problems, 
Lau, L:u=O, u=o on cU are of positive, finite dimension and the problem L U= . a 
g + DJ', u = qJ on cU is solvable if and only if 

(8.15) f {(g-ciDiqJ-dqJ +(1qJ)v-(P-di DjqJ-biqJ)Div} dx=O 
a 

for all v satisfying L:v=O, v=O on cU. Furthermore if condition (8.8) holds, then 
Ec(-oo,O). 

The operator G a: Jf* -+ Jf given by G a = L;; I for (1 ¢ E is called the Green's 
operator for the Dirichlet problem for La' By Theorem 5.3, Ga is a bounded linear 
operator on .tf*. consequently we have the following apriori estimate. 

Corollary 8.7. Let UE W I • 2(U) satisfy Lau=g+DJi, U=qJ on cU with (1¢E. 
Then there exists a constant C depending only on L, (1 and U such that 

(8.16) lI u ll w I. 2(m~ c(llgl1 2 + IIqJllw I. 2(m)' 

It follows from Theorem 8.6 that Theorem 8.3 remains valid if we replace bi 

by - ci in the condition (8.8). 

8.3. Differentiability of Weak Solutions 

The rest of this chapter is largely devoted to regularity considerations. We shall 
study in this section the existence of higher order weak derivatives of weak 
solutions of equation (8.3). With the aid of the differentiability results derived 
below, we shall deduce existence theorems for the classical Dirichlet problem from 
Theorem 8.3. In later sections we shall treat pointwise properties of weak solutions, 
such as the strong maximum principle and Holder continuity. Our first regularity 
result provides conditions under which weak solutions of the equation Lu = fare 
twice weakly differentiable. 

Theorem 8.8. Let u E W I ,2(U) bea weak solution of the equation Lu= fin U where 
L is strictly elliptic in U, the coefficients aij, bi , i,j= I, ... , n are uniformly Lipschitz 
continuous in U, the coefficients ci , d, i = I, ... , n are essentially bounded in U and the 
functionfis in L2(U). Thenfor any subdomain U' c cU, we have u E W 2,2(U') and 

(8.17) 

for C = C(n, A., K, d'), where A. is given by (8.5), 

K=max {ila ii , billeo.l(ul' IIci, dllL''''(U)} and d'=dist (U', aU). 
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Furthermore u satisfies the equation 

almost everywhere in 0. 

Proof From the integral identity (S.4) we have 

(8.19) faijDjuDjv dx= f gv dx 'Iv E C~(O) 
n a 

where gEL 2(0) is given by 

For 12h1 < dist (supp v, (0), let us replace v by its difference quotient A - hV = A; hV 
for some k, I ~k~n. We then obtain 

Since 

f Ah(a;jDp)D;v dx= - f aijDjuD; A -hV dx 
a a 

=- f9A-hVdx. 
a 

we then have 

f aij(x+hel)Dj AltuD;v dx= - f (g·Dv+g A-hv) dx 
a a 

where i = (91, ... ,9") andg; = Altdj DJ.u. Using (S.20) and Lemma 7.23, we can then 
estimate 

f aij(x + hel)Dj AhuD;v dx~(lIgIl2 + IIg1l 2)IIDvIl 2 
a 
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To proceed further let us take a function" e qeD), satisfying 0 ~,,~ 1, and set 
V=,,2 ..1"u. We then obtain, using (8.5) and the Schwarz inequality, 

A. fl"D..1"uI 2 dx ~ f ,,2aij(x+he,,) ..1"Diu ..1"Dp dx 
u u 

= f dj(x+he,,)Dj A"u(Div-2 ..1"urrDi") dx 
u 

~(C(n)K Ilu Ilwl. 2(D) + IIf 112 H II"D..1"u 112 + 2 11..1 "uD" 11 2) 

+C(n)KII"D A"ull 2 II..1"uD"II 2. 

It then follows (with the help of Young's inequality (7.6» that 

II" ..1"Dull 2 ~ c(IIuliWI. 2(0)+ IIfII2 + II..1"tcD"II 2) 

~ C(I +sup 1v"IHiluliWI. 2(0) + II f112) 
a 

by Lemma 7.23, where C= C(n, A., K). The function" may now be chosen as a 
cut-off function such that ,,=1 on D'eeD and ID"I~2/d', where d'=dist 
(aD, D'). By Lemma 7.24 we obtain Du e W1.2(D') for any D'e cD, so that 
u e W2(D) and the estimate (8.17) holds. Finally, we have Lu e L~c(Q) and clearly 
the integral identity (8.4) implies that Lu= f almost everywhere in D. 0 

We note here (see Problem 8.2) that in the estimate (8.17), the quantity 
IIullwl.2(Q) may be replaced by IIullL2(0). 

The following general existence result for the Dirichlet problem for elliptic 
equations of the form 

can now be concluded from Theorems 8.3 and 8.8. 

Theorem 8.9. Let the operator L be strictly elliptic in D and have coefficients 
aii e CO,I(D), b i , c e L"'(D), c~O. Then for arbitrary fe L2(D) and q> e W I ,2(Q), 
there exists a unique function u e WI,2(Q) n Wt.;/(D) satisfying Lu= finD and 
u-q> e W~,2(Q). 

Theorem 8.9 continues to hold for sufficiently smooth aD with cp e W2,2(D) if 
we assume only that the principal coefficients aij are in CO(Q) (see Theorem 9.15). 
However, the uniqueness result will break down if the hypotheses are further 
weakened to allow discontinuous aij e L 00 (D), as is evidenced by the equation 

(8.22) 
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which has for n>2(2-A.»2 the two solutions ul(x)= I, u2(x)=/x/). E W2.2(B) 
and agreeing on oB, where B is the unit ball, BI (0). 

Further differentiability of weak solutions can be deduced readily from the 
proof of Theorem 8.8. For, suppose that we strengthen the smoothness conditions 
on the coefficients by assuming aij, bi E C I . 1(0), ci, dE CO· 1(0), together with 
f E W I • 2(Q). Then, replacing v by Dkv for some k, 1 :::;k:::;n, in the identity (8.19), 
we obtain on integration by parts 

and since u E W~'/(Q), we have Dkg E L~oc(Q). Hence Dtu E W[;,-/(Q). Bya straight
forward induction argument, we can then conclude the following extension of 
Theorem 8.8. 

Theorem 8.10. Let u E W I • 2(Q) be a weak solution of the equation Lu= f in Q 
where L is strictly elliptic in Q, the coefficients aij, bi E C'.I(O), the coefficients 
ci , dEC' - I. I(D) and the function f E W k. 2(0), k ~ 1. Then for any subdomain 
Q'ccQ, wehaveuE Wk+2.2(Q') and 

(8.24) II ull Wk + 2. 2(0'):::; C( II ull W I. 2(0) + II f II Wk. 2(0) 

By the Sobolev imbedding theorem, Corollary 7.11, we now obtain from 
Theorem 8.10, 

Corollary 8.11. Let u E Wi. 2(Q) be a weak solution of the strictly elliptic equation 
Lu = fin Q and suppose that the functions aij, N, ci, d, f are in C""(Q). Then also 
u E C""(Q). 

8.4. Global Regularity 

Under appropriate smoothness conditions on the boundary aQ the preceding 
interior regularity results can be extended to all of Q. We first derive the global 
analogue of Theorem 8.8. 

Theorem 8.12. Let us assume, in addition to the hypotheses of Theorem 8.8, that 
aQ is of class C2 and that there exists a function qJ E w2. 2(Q) for which u - qJ E 

W~·2(Q). Then we have also u E W 2.2(Q) and 

where C= C(n, A., K, aQ). 
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Proof Replacing u by u - cp, we see that there is no loss of generality in assuming 
cp=O and hence u E W~·2(D). Also by Lemma 8.4 we can estimate 

(8.26) 

where C= C(n, A, K). Since aD E C2 , there exists for each point Xo E aD, a ball 
B= B(xo) and a one-to-one mapping", from B onto an open set Dc Rn such that 
",(B n D)cR~ ={x E Rnlxn>O}, ",(B n aD)coR~ and", E C2(B), ",-I E C2(D). 
Let BR(xO)ccB and set B+=BR(xO) n D, D'=",(BR(xO»' D+=",(B+). Under 
the mapping", the equation Lu = fin B+ is transformed to an equation of the same 
form in D+ (see page 97). The constants A, K for the transformed equation can be 
estimated in terms of the mapping '" and their values for the original equation. 
Furthermore, since u E W~·2(D), the transformed solution V=U 0 ",-I E W I •2(D+) 
and satisfies "V E W~' 2(D+) for all " E q(D'). Accordingly, let us now suppose 
that u E Wi. 2(D+) satisfies Lu= fin D+ and flU E W~·2(D+) for any" E q(D'). 
Then for Ihl<dist (supp. 11, aD') and 1 ~k~n-l, we have 112A:UE WJ·2(D+). 
Consequently the proof of Theorem 8.8 will apply and we can conclude that 
DiiU E L 2( t/l(B p n D» for any p < R, provided i or j =I: n. The remaining second 
derivative Dnnu can be estimated directly from the equation (8.18). Hence, 
returning to the original domain D with the mapping ",-1 E c2 we obtain that 
U E W 2 • 2(Bp n 0). Since Xo is an arbitrary point of aD and u E Wl!~2(0) by 
Theorem 8.8, we infer that U E W 2• 2(0). Finally by choosing a finite number of 
points Xli) E aD such that the balls Bp(X(i) cover aD, we obtain the estimate (8.25) 
from (8.17) and (8.26). 0 

Note that the conditions, u E W 2. 2(D+), flU E W~· 2(D+) for" E C~(D'), imply 
that also "D"u E W~·2(D+) provided 1 ~k~n-1. Namely, by Lemma 7.23 we 
have" A:UE Wk 2(D+) and 

II" A:ullw'.2(D+)~ 1I"llc'(D+) lI ullw 2• 2(D+) 

for sufficiently small h. It follows, by Theorem 5.12, that there exists a sequence 
{" A:iu} converging weakly in the Hilbert space W~·2(D+). The limit of this 
sequence is clearly the function "D"u. Further global regularity of solutions of the 
equation Lu = f then follows in the same manner as Theorem 8.10 from Theorem 
8.8. Accordingly we have the following extension of Theorems 8.10 and 8.11. 

1beorem 8.13. Let us assume in addition to the hypotheses of Theorem 8.10, that 
aD E C"+2 andthatthereexistsafunctioncp E Wk+ 2. 2 (O)for which u-cp E W~·2(0). 
Then we have also U E wk+ 2. 2(0) and 

where C= C(n, A, K, k, 00). If the functions di , bi , ci , d,fand cp belong to C""(O) and 
aD is of class CD, then the solution u is also in C""(O). 
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Combining Theorems 8.3 and 8.13, we have an existence theorem for the 
classical Dirichlet problem for equation (8.21) that was previously obtained in 
Chapter 6 (see Theorems 6.14 and 6.19). 

Theorem 8.14. Let the operator L (given by (8.21» be strictly elliptic in Q and 
have C<X>(.Q) coefficients with c~O in Q. Then if i)Q E Coo, there exists a unique 
solution u E Coo( Q) of the Dirichlet problem, Lu = f, u = cp on i)Q for arbitrary f, 
cp E Coo(.Q). 

The existence theorems of Chapter 6 can now be obtained from Theorem 8.14 
by approximation arguments. Of course we still require the apriori estimates of 
Chapter 6 to guarantee the convergence of the approximating solutions. 

8.5. Global Boundedness of Weak Solutions 

We derive here results asserting the global boundedness of WI.2(Q) solutions of 
equation (8.3) that are bounded on i)Q. An interesting feature of the test function 
techniques to be used is that they depend not so much on the linearity of the 
operator L but rather on a nonlinear structure satisfied by L. To be more explicit, 
let us write (8.3) in the form 

(8.28) DiAi(X, U, Du) + B(x,u, Du) = 0 

where 

(8.29) 
Ai(x, z, p)=aii(x)pj+bi(x)z- P(x), 

B(x, z, p) = Ci(X)Pi +d(x)z-g(x), 

for (x, z, p) E Q x !R x !R". 
A weakly differentiable function u is then called a weak subsolution (super

solution, solution) of equation (8.28) in Q if the functions Ai(x, u, Du) and B(x, u, 
Du) are locally integrable and 

(8.30) f (DiVAi(X, u, Du) - vB(x, u, Du» dx ~ (~, =)0 

n 

for all v~o, E CMQ). 
Writing b=(b l , ... , b"), c=(c1, ... , c"), f=(/I, ... ,/") and using condition 

(8.5) and the Schwarz inequality, we have the estimates 

(8.31 ) 
Pi Ai(x, z, p) ~ ~ IpI 2 -1 (lbzl2 + If12) 

IB(x, z, p)1 ~Icllpl +Idzl +Igl· 
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Equation (8.3) is accordingly said to satisfy the structural inequalities (8.31). For 
our purposes below, we may even simplify the form of these inequalities by writing 

(8.32) z=lzl+k, 

for some k>O. We obtain then, for any 0<&< I, 

. A. 2 1:2 
PiA'(x, Z, p) ~ 2 (ipi - 2vz ), 

(8.33) 

IzB(x. z, p)1 ~~ (&IPI2 +~ Z2)-

We now prove: 

Theorem 8.1S. Let the operator L satisfy conditions (8.5). (8.6) and suppose that 
fieL"(O), i=I •... ,n. geL4/2(O)for some q>n. Then ifu is a Wl,2(0) sub
solution (supersolution) of equation (8.3) in 0 satisfying u~O (~O) on 00, we have 

(8.34) sup u( -u)~ C( Ilu+(u- )11 2 +k) 
a 

Proof We assume that u is a subsolution of (8.3). For p~ I and N>k, let us 
define a function He C1[k. (0) by setting H(z)=zP-kP for z e [k, N] and taking 
H to be linear for z ~ N. Let us next set w = ii + = U + + k and take 

w 

(8.35) v=G(w)= fIH'(s)12 ds 
k 

in the integral inequality (8.30). By the chain rule, Theorem 7.8, v is a legitimate test 
function in (8.30) and on substitution we obtain, using the structure (8.33), 

fIDwI2G'(w) dx~ S (1;G'(w)w2 +~ G(w)IB(x, u. Du)1) dx 
a a 

~& f G'(w)IDwI 2 dX+(1 +D f1;G'(w)w2 dx 
a a 

since G(s)~sG'(s) and Du= Dw when v=G(w»O. Hence. taking &=t, we obtain 

f G'(w)IDwI 2 dx~6 f1;G'(w)w2 dx, 
a a 
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that is. by (8.35). 

fIDH(w)12 dx~6 f5IH'(w)wI2 dx. 
n n 

Since H(w) E W~' 2(.Q). we may apply the Sobolev inequality (7.26) and the Holder 
inequality to obtain 

( )l~ IIH(w)1I2Ii/lIi-2)~ C f5(H'(W)W)2 dx 
n 

~ q 511!/f IIH'(w)wIl 2q/(q_2) 

where n=n for n>2. 2<~<q. C=C(n) for n>2. and C=c(~.IDI) for n=2. It is 
clear that the structure (8.33) and consequently the above estimate continue to 
hold for k=O provided in (8.32) the terms involving/and 9 are set equal to zero. 
Choosing k as in the statement of the theorem. we thus have 

(8.36) II H(w)il 2lillii- 2'~ qwH'(w)11 2q/(q_ 2, 

where C=C(n. v. ID/). To proceed further. we recall the definition of H and let 
N -+ 00 in the estimate (8.36). It follows then. for any p~ I. that the inclusion 
WE L 2Pq/(q- 2)(.Q) implies the stronger inclusion. WE L 2Prif(Ii-2)(.Q). and moreover. 
setting q* =2q/(q- 2). X = n(q- 2)/q(n- 2» I. we obtain 

The result is now obtained by iteration of the estimate (8.37). Namely. by induc
tion. we may assume WEn U(.Q). Let ustakep=xm.m=O. 1.2 •.... so that by 
(8.37) l:S;p<cx: 

N-l 

IlwllxNq* ~ n (Cxm)rmllwllqo 
o 

N-l 

~C"illwllq*. (1= L X- m, 
o 

N-l 

t= L mx- m 

o 

where C=C(n. v. q.ID/). Letting N -+ 00, we therefore obtain 

sup w~ Cilwllq*. 
n 

whence by the interpolation inequality (7.10) we have 

sup w~CilwIl2. 
n 
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The desired estimate (8.34) follows from the definition w=u+ +k. The result for 
supersolutions is obtained by replacing u with - u. 0 

The above technique of iteration of LP norms was introduced by Moser [MJ I]. 
The proof of Theorem 8.15 may also be effected by other choices oftest functions; 
(see [LV 4] or [ST 4]). 

Let us now suppose that in the statement of Theorem 8.S the hypothesis u~O 
on oU is generalized to u~1 on au for some constant I. Then, since L(u-/)= 
LN-L1=Lu-/(Dibi +ti), the conclusion ofthe theorem will hold for the function 
u-/with k replaced by k=k+A. -11/1(lIbll,,+ IIdll"lz). That is, a subsolution (super
solution) u of (8.3) will satisfy an estimate 

(8.38) sup u( -u)~ c(lIuliz + k +111) 
u 

where as before k =A. -l( IIfll" + Ilgll"lz) and C= C(n, v, q, lUI). In particular, if u is a 
solution then (8.38) holds for lui. 

We propose next to derive an estimate for sup u independent of lIullz, that is, an 
u 

apriori bound which extends the weak maximum principle, Theorem 8.1. From the 
estimate (8.16), lIuliz can be bounded independently of u for solutions of (8.3) 
provided L is one-to-one. This is the case, for example, if (8.8) holds. This bound 
may be extended to subsolutions through the weak maximum principle and the 
existence theorem, Theorem 8.3. For, if u is a subsolution of (8.3), and (8.8) holds, 
we may define a function v to be the solution of the generalized Dirichlet problem 
LV=9+DJi, V=U on iJU. By Theorem 8.1, u~v in U and hence lIu+ liz ~ IIvll z . We 
therefore have an estimate 

sup u~sup u+ + Ck 
u au 

for subsolutions of(8.3), where C is a constant independent ofu. However, we now 
show that this result can be derived from the nonlinear structure (8.31) without 
use of the linear existence theory and, moreover, that the constant C is determined 
by the same quantities as in the estimate (8.34). 

Theorem 8.t6. Let the operator L satisfy conditions (8.5), (8.6) and (8.8), and 
suppose that fi E U(Q), i = 1, ... , n, 9 E L"IZ(Q) for some q> n. Then if u is a 
WI. z(Q) subsolution (supersolution) of equation (8.3) we have 

(8.39) supu(-u)~supu+(u-)+Ck 
au 
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Proof Let us suppose that u is a subsolution of (8.3). By the assumption (8.8), 
I = sup u + is a supersolution and hence there is no loss of generality in assuming 

au 
1=0. Proceeding as in the proof of Theorem 8.1, we have 

for all non-negative v in W~' 2(Q) such that uv ~ O. The weak inequality (8.40) 
clearly satisfies a structure condition (8.3 I) with bi = d=O and with c replaced by 
b+c. Let us assume k>O and put M=sup u+. In (8.40) we then choose the test 

function 

and obtain, using (8.31), 

Consequently, by the definition of k, we have 

Let us now define 

M+k 
w=!og k +' M+ -u 

so that from the Schwarz inequality we obtain 

flDwl2 dx~C(l +A. -2 flb+cl2 dx) 
u u 

~c(v, ID\), 

and hence, by the Sobolev inequality (7.26), 

(8.41 ) 
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The proof is completed by showing that w is also a subsolution of an equation of 
the form (S.3). Letting 1J E C~(Q) satisfy 1J ~O. 1JU ~O in a, we substitute in (8.40) 
the test function 

Then we obtain 

Therefore 

f(aijDjwDi1J +1JdjDiWDjw-(bi+Ci)1JDiW) dx 
n 

f(d jDjwDi1J-(bi+ Ci)1JDiW) dx+l f 1JIDwI 2 dx 
n n 

and consequently 

(8.42) f (aijDjwDi1J-(bi +ci)1JDiw) dx~ f (01J+ ]iDi1J) dx 
n n 

where 0=lgl/k+If12/2lP,]i= P/(M +k-u+), and evidently 11011 11/2 ~2A., IlllllI~A.. 
Hence we can apply Theorem 8.15 to obtain 

sup w~C(l + IlwIl 2), C=C(n, v, q, laD 
n 

~C by (S.41). 

Therefore (M+k)/k~C and from this the desired estimate (8.39) follows. The 
result for supersolutions is obtained by replacing u with - u. 0 

Theorem 8.16 can be viewed as the generalized version of the classical apriori 
estimate, Theorem 3.7. We remark that the result is still valid if bi is replaced by 
-ci in condition (8.8); (see Theorem 9.7). Furthermore, it is clear from the above 
proof that the boundedness of the coefficients bi , ci and d can be replaced by the 
condition D E LII12(a), q > n. 
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8.6. Local Properties of Weak Solutions 

We shift our attention now from global to local behavior. Denoting the matrix 
[aii(x)] by a(x), xED, we add an additional structural inequality to (8.31) and 
(8.33), namely 

(8.43) IA(x, Z, p)1 ~ lailpi + Ibz! + IfI· 

By dividing equation (8.3) by the constant A12. we can assume that A=2 in the 
structural inequalities. Collecting these inequalities together under this assumption, 
we thus have, 

IA(x, z, p)1 ~ lailpi + 2(0)1 12Z• 

(8.44) p. A(x, Z, p) ~ Ipl2 - 2oz2, 

1 
IzB(x, z, p)1 ~elpl2 +- OZ2, 

e 

for any O<e~ 1. where z and 0 are defined by (8.32) with A= 2. For the develop
ment of the local results, we define the quantity k by 

where R>O and ()= I-n/q. We shall establish a local analogue of Theorem 8.15. 
namely: 

Theorem 8.17. Let the operator L satisfy conditions (8.5). (8.6) and suppose that 
P E U(U). i= 1, ...• n. g E UI2(U) for some q>n. Then if u is a W I • 2(U) sub
solution (supersolution) of equation (8.3) in D. we hat'eJor any ball B2R( y)c D and 
p> I, 

(8.46) sup u(-u)~C(R-nIPllu+(u-)IILP(B2R(YII+k(R)) 
BR(Y' 

where C= C(n, A/A, vR. q. pl. 

The crucial result in our development of local properties of weak solutions and 
the subsequent nonlinear theory will be the following weak Harnack inequality for 
supersolutions. 

Theorem 8.18. Let the operator L satisfy conditions (8.5), (8.6) and suppose that 
fi E U(U), g E UI2(U) for some q>n. Then if u is a Wt.2(U) supersolution of 
equation (8.3) in D, non-negative in a ball B4R(y)cD and I ~p<n/(n-2), we have 

(8.47) R-nlp lIuli I.P(B2R(YH~C( inf u+k(R» 
BR(Y' 

where C=C(n, A/A. vR. q.p). 
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In the following we shall abbreviate BR(y) = BR for any R, the center y to be 
understood. For the case in Theorem 8.17 when u is a bounded, non-negative sub
solution, it is convenient to prove Theorems 8.17 and 8.18jointly. The full strength 
of Theorem 8.17 can then be obtained by varying the test functions used. The 
essence of this idea has already been demonstrated in the proof of Theorem 8.15. 
Accordingly, it is left to the reader to make the necessary extension of our proof 
below. Broadly speaking, the scheme of the joint prooffollows the Moser iteration 
method (see [MJ 2]) introduced in the previous section combined with the John
Nirenberg result (Theorem 7.21), which is employed to bridge a vital gap in the 
iteration scheme. The test functions are again constructed from power functions 
but in order to establish Theorem 8.18 the exponents of these powers must be 
unrestricted real numbers. The detailed proof now follows. 

We assume initially that R= I and k>O. The general case is later recovered 
through a simple coordinate transformation: x -+ xl R, and by letting k tend to 
zero. Let us define, for /3#0 and non-negative" E C~(B4)' the test function 

(8.48) 

By the chain and product rules, v is a valid test function in (8.30) and also 

so that by substitution into (8.30) we obtain 

(8.50) /3 f ,,2iifJ - 1 Du· A(x, u, Du) dx + 2 f "D,,· A(x, u, Du)iifJ dx 
a a 

-f ,,2iifJ B(x, u, Du) dx 
a 

~O if u is a subsolution, 

~ 0 if u is a supersolution. 

Using the structural inequalities (8.44), we can estimate. for any O<I:~ I, 

,,2iifJ - 1Du· A(x, u, Du) ~ ,,2iifJ - 1 IDuI2 - 25" 2 iifJ + I 

I"D,,· A(x, u, Du)iilll ~ lal"ID"liiIlIDul + 25 1/2"ID"liill + I 

(8.51) ~ ~ ,,2iill - II Dul2 + (I + 1;~2) ID,,12iill+ I 

+5,,2Uf/+ I 

1,,2iifJB(x. u. Du)1 ~1:,,2UII-IIDuI2 +! D'12UIl + I. 
I: 
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We assume henceforth that {J>O if u is a subsolution and {J<O if u is a super
solution. By choosing £= min {I, IPI/4}, we then obtain from (8.50) and (8.51) 

(8.52) f ,,2ull- 1IDuI 2 dx~C<I{J1> fO;,,2+(l +laI2)ID,,12)ull + 1 dx, 
u u 

where c( I PI) is bounded if I P I is bounded away from zero. It is now convenient to 
introduce a function w defined by 

w = {u(1l + 1112 if P #- - 1 
log u if P = - 1. 

Letting y=P+ 1, we may rewrite (8.52) 

(8.53) 

ifP=-l. 

u 
The desired iteration process can now be developed from the first part of (8.53). 
For from the Sobolev inequality (7.26) we have 

""wl~ii/(;j-21~ C f (I"Dw1 2 +lwv,,12) dx 
U 

where ii=n for n>2, 2<2<q and C=C(n). Using the Holder inequality (7.7) 
followed by the interpolation inequality (7.10). we obtain, for any £>0, 

f5("W)2 dx~ 115I1qI211"wll~q/(q_21 
U 

where a=ii/(q-ii). Hence, by substitution into (8.53) and appropriate choice of 
£, we obtain 

where C= C(ii, A, v, q, IPI> is bounded when IPI is bounded away from zero. 
I t is now desirable to specify the cut -off function" more precisely. Let r 1 ' r 2 be such 
that l~rl<r2~3 and set ,,=1 in B'I' ,,=0 in Q-B'2 with ID"I~2/(r2-rl)' 
Writing X =ii/(ii - 2) we then have from (8.54) 

(8.55) 
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For r < 4 and p * 0, let us now introduce the quantities 

(8.56) <P(p, r)=( fliW dx YIP. 
B, 

By Problem 7.1, we have 

<P(oo, r)= lim <P(p, r)=sup u" 
P-IX Br 

and 

<P(-oo, r)= lim <P(p, r)=infu. 
p--oo B,. 

From inequality (8.55), we now obtain 

iCy> 0 

(8.57) 

These inequalities can now be iterated to yield the desired estimates. For example, 
when u is a subsolution we have P>O and Y> I. Hence, taking p> 1, we set Y= 
Ym=Xmp and rm= I +2-m, m=O, I, ... , so that, by inequality (8.57), 

<p(xmp, 1)~(CX)2(1+a)Iml-"'<p(p, 2) 

= C<P(p, 2), C= C(n, A, v, q, p). 

Consequently, letting m tend to infinity, we have 

(8.58) sup u~qullV'(B2)' 
BI 

and, by means of the transformation: x -+ xl R, the estimate (8.46) is established. 
For the case when u is a supersolution, that is when P <0 and Y< I, we may prove 
in a similar manner, for any p, Po such that O<Po <p<X, 

(8.59) 
<P(p, 2)~ C<P(Po, 3) 

<P(-Po' 3)~C<P(-00, I), C=C(n, A, q, p, Po)· 

The conclusion of Theorem 8.18 will thus follow if we can show that, for some 
Po>O, 
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In order to establish (8.60) we tum to the second of the estimates (8.53). Let 
B2r be any ball of radius 2r, lying in B4 ( = B4 ( y», and choose the cut-off function 
'1 so that '1 = I in Br , '1 =0 in Q- B4 and ID'11 ~ 21r. From (8.53), with the aid of 
the Holder inequality (7.7), we then obtain 

(8.61) f IDwl dX~Cr"/2( f IDwl2 dx )'/2 
Br Br 

Hence, by Theorem 7.21, there exists a constant Po >Odependingon n, A and v such 
that, for 

we have 

and thus 

f ePolw- ... ol dx~C(n, A, v), 

B, 

f ePow dx f e - Pow dx ~ C ePOwo e - Powo = C. 

B, B3 

Recalling the definition of w, we obtain the estimate (8.60) and consequently 
Theorem 8.18 with R= I and k>O. The full result then follows by means of the 
transformation: x ~ xl R and by letting k tend to zero. 0 

The strong maximum principle for subsolutions of the equation Lu=O, the 
Harnack inequality for solutions of Lu=O and the local Holder continuity of 
solutions of equation (8.3) may all be derived as consequences of the weak Harnack 
inequality. We treat these interesting local results in tum. 

8.7. The Strong Maximum Principle 

Theorem 8.19. Let the operator L satisfy conditions (8.5), (8.6) and (8.8) and let 
u E W 1• 2(Q) satisfy Lu~O in Q. Then, iffor some ball Bc cQ we have 

(8.62) sup u=sup u~O, 
B a 

the function u must be constant in Q and equality holds in (8.8) when u¥;O. 
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Proof Writing B= BR(y), there is no loss of generality in assuming B4R(Y)c Q. 

Let M = sup u and apply the weak Harnack inequality (8.47) with p = 1 to the 
fl 

supersolution v = M - u. We obtain thus 

R-n f (M-u)dx~Cinf(M-u)=O. 
B2R B 

Consequently u= Min BlR and by an argument similar to that of Theorem 2.2, 
we obtain u=M in Q. 0 

Theorem 8.19 shows that in an appropriately generalized sense, a subsolution 
of Lu=O cannot possess an interior positive maximum. For continuous subsolu
tions the statement reduces to the usual classical one. Note that the strong mini
mum principle for supersolutions of Lu = 0 will follow immediately by replacement 
of u with - u, and that the weak maximum principle, Theorem 8.1, for CO(Q) 
subsolutions is a direct consequence. 

8.8. The Harnack Inequality 

By combining Theorems 8.17 and 8.18, we obtain the full Harnack inequality. 

Theorem 8.20. Let the operator L satisfy conditions (8.5) and (8.6), and let 
u E Wl.2(Q)satisfyu~0 in Qand Lu=O in Q. Thenfor any ball B4R(y)eQ, we hat'e 

(8.63) sup u~ C inf u 
BR(Y) BR(Y) 

where C= C(n, A/A., vR). 

Examination of the dependence of the constants C on A in the estimates (8.54) 
and (8.61) shows that the constant C in (8.63) can be estimated by 

When the matrix a is symmetric this estimate may be refined even further; (see 
Problem 8.3). By an argument similar to that of Theorem 2.5, we can deduce from 
Theorem 8.20 the following form of the Harnack inequality. 

Corollary 8.11. Let Land u satisfy the hypotheses of Theorem 8.20. Then for any 
Q'e cQ, we have 

(8.64) sup u ~ C inf u 
fl' fl' 

where C=C(n, A/A., v, Q', Q)' 
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8.9. Holder Continuity 

The following result is basic to the theory of second order quasilinear equations. 
Indeed, its discovery by De Giorgi [DG I] and Nash [NA] for operators of the 
form Lu= Di(aii(x)Dp) essentially opened up the theory of quasilinear equations 
in more than two variables. 

Theorem 8.22. Let the operator L satisfy conditions (8.5), (8.6), and suppose that 
fi E U(U), i= I, ... , n,g E Lq'2(U)for some q>n. Then ifu isa W 1• 2(U) solution of 
equation (8.3) in U, it follows that u is locally Holder continuous in U, and for any 
ball Bo=BRo(Y)cU and R:!!;,Ro we have 

(8.65) oscu:!!;, CRIJ(Rj)1J sup lui + k) 
Bo 

where C=C(n, A/A., v, q, Ro) and cx=cx(n, A/A., vRo' q) are positive constants, and 
k = A. -1(llfll q + Ilgll q/2)' 

Proof We may assume without loss of generality that R:!!;,Ro/4. Let us write 
Mo = sup lui, M 4 =sup u, m4 =infu, MI = sup u, ml =infu. Then we have 

Bo 

L(M4 -u)=M4(Dibi+d)-DJi-g 

L(u-m4 )= -m4(Dli+d)+DJi+g. 

Hence, if we set 

k(R) =A. -I R6(ll f ll q + Mollbllq}+A. -I R26(lIgli q/2 + Molldllq/2), 

{)=l-n/q 

and apply the weak Harnack inequality (8.47) withp= I to the functions M4 -u, 
u-m4 in B4R , we obtain 

R-IJ f (M4 -u) dx:!!;' C(M4 -MI +k(R», 
B2R 

R- IJ f (u-m4 ) dx:!!;' C(m l -m4 + k(R». 
B2R 

Hence by addition, 
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so that, writing 

we have 

w(R)=osc u=M1 -m 1 , 

BR 

w(R)~yw(4R)+ K(R) 

201 

where Y= 1- C- 1 , C= C(n, A/A., vRo' q). The following simple lemma then implies 
the desired result. 0 

Lemma 8.23. Let w be a non-decreasing function on an interval (0, RoJ satisfying, 
for all R ~ Ro' the inequality 

(8.66) w(rR)~yw(R)+(1(R) 

where (1 is a/so non-decreasing and ° < y, r < I. Then, for any Jl. E (0, I) and R ~ Ro' 
we have 

where C= C(y, r) and 0(= O(Y, r, Jl.) are positive constants. 

Proof Let us fix initially some number Rl ~Ro. Then for any R~Rl we have 

since (1 is non-decreasing. We now iterate this inequality to get, for any positive 
integer m, 

m-l 

w(rmRl)~ymw(Rl)+(1(Rl) L yi 
i=O 

For any R~Rl' we can choose m such that 

Hence 
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Now let R 1 = Rb - It RIt so that we have from the preceding 

I ( R)( 1 - p.)(log )'/log r) a(R ' - p.Rp.) 
w(R)~- - w(Ro)+ 0 . 0 

)' Ro I-}' 

Theorem 8.22 follows by choosing Jl. such that (l - Jl.) log yjlog 1" < Jl.b. An 
alternative proof based on Theorem 8.17 rather than Theorem 8.18 is outlined in 
Problem 8.6. 

By combining Theorems 8.17 and 8.22 we have the following interior Holder 
estimate for weak solutions of equation (8.3). 

Theorem 8.24. Let the operator L satisfy conditions (8.5) and (8.6), and suppose 
that fiELq(Q), i=I, ... ,n, gELq!2(Q) for some q>n. Then, if UE W I • 2(Q) 
satisfies equation (8.3) in Q, we hare/or any Q' ceQ the estimate 

(8.68) Ilu IlcoUl') ~ C( Ilullv(ll) + k), 

where C = C(n, A/A., v, q, d'), d' = dist (Q',oQ), IX = lX(n, A/A., vd') > 0 and k = 

A. -1(llfllq + Ilgllq/2)' 

Proof. The estimate (8.68) follows by taking Ro=d' in Theorem 8.22 and using 
Theorem 8.17 to estimate sup lui. 0 

Remark. It is clear from the above proofs that the constants C in estimates (8.46), 
(8.47) and (8.63) are non-decreasing with respect to the argument vR, the constant 
C in (8.65) is non-decreasing with respect to Ro' the constants IX in (8.65) and (8.68) 
are non-increasing with respect to the arguments vRo and vd' respectively. When 
v=O, the constants C in (8.46), (8.47) and (8.63) and IX in (8.65) ~.nd (8.68) will be 
independent of R, Ro and d' and hence independent of the domains involved in the 
assertions of Theorems 8.17, 8.18, 8.20, 8.22 and 8.24. 

8.10. Local Estimates at the Boundary 

Our previous definition of inequality of Wi. 2(Q) functions on the boundary iJQ 
can be generalized in the following way. Let T be any subset of Q and u be a 
W1.2(Q) function. Then we shall say u~O on Tin the sense of W 1• 2(Q) ifu+ is 
the limit in W 1• 2(Q) of a sequence of functions in C~(n- T). One sees that if u 
is continuous on T, this definition is satisfied if u ~ 0 on T in the usual sense. 
When T = oQ, this definition coincides with our earlier one in Section 8.1. Other 
definitions of inequality on T will follow as previously indicated there. We shall 
establish the following extensions of Theorems 8.17 and 8.18. 

Theorem 8.2S. Let the operator L satisfy (8.5), (8.6) and suppose that fi E Lq(Q), 
i= 1, ... , n, 9 E U!2(Q) for some q>n. Then if u is a W 1• 2(Q) subsolution of 
equation (8.3) in Q, we have for any Y E IR", R > 0 and p> 1, 

(8.69) sup u,Z, ~ C(R-"/P II u,Z, II LP(B2R(Y)) + k(R» 
BR(Y) 
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where 

M= sup u+, 

+ {sup {u(x),M}, XEQ, 
UM(X)= M 

, X~ Q, 

and k is given by (8.45), C= C(n, AlA., vR, q, pl. 

Theorem 8.26. Let the operator L satisfy conditions (8.5), (8.6) and suppose that 
fi E U(Q), g E U!2(Q) for some q>n. Then if u is a W1.2(Q) supersolution of 
equation (8.3) in Q and is non-negative in Q n B4R(y) for some ball B4R(y)c ~n, 
we have,for any p such that I ~p < n/(n - 2), 

(8.70) 

where 

R-n!Pllu';;IIf.P(B2R(Y))~C( inf u';;+k(R» 
BR(Y) 

m= inf u, 
oU n B4R 

_ {inf{U(X),m}, xEQ, 
um(x)= 

m, x~Q, 

and C= C(n, A/A., vR. q, pl. 

Proof A reduction to the proof of Theorems 8.17 and 8.18 is made as follows. We 
set u = u; + k if u is a subsolution and u = u,;; + k if u is a supersolution. Then as 
test functions in the integral inequalities (8.30) we choose 

(8.71 ) V= 2{UfJ -(M+k)fJ if /3>0 
'7 ufJ-(m+k)fJ if /3<0, 

where '7 E q(B4R ) is to be further specified. Since the structure (8.44) holds in the 
support of v, for z = u and p = Du, and since v ~ '72UfJ, we arrive again at the estimate 
(8.52) for U. The desired estimates (8.69) and (8.70) are then obtained as in the 
proof of Theorems 8.17 and 8.18. 0 ' 

A global continuity result cannot be derived from Theorem- 8.26 unless some 
restriction is placed on the domain Q. We shall say that Q satisfies an exterior cone 
condition at a point Xo E cQ if there exists a finite right circular cone V = V with _ Xo 
vertex Xo such that Q n Vxo = Xo- An exterior cone condition is clearly satisfied 
wherever an exterior sphere condition holds. We now have the following extension 
of the Holder estimate (8.65). 

Theorem 8.27. Let the operator L satisfy conditions (8.5), (8.6) and suppose that 
fi E U(Q), i= I, ... , n, g E U!2(Q)for some q>n. Then ifu is a W t •2(Q) solution of 
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equation (8.3) in U and U satisfies an exterior cone condition at a point Xo E oU, we 
have/or any O<R~Ro' and Bo= BRo(xO)' 

(8.72) osc u ~ C{R"(Ro" suplul + k) + q(jRRo)} 
U"Bo 

whereq(R)= osc u, andC=C(n, A/A., v, q, Ro' V"o)' 
au" Ba("o) 

IX=IX(n, A/A., vRo' q, V"o) are positive constants. 

In the following we shall abbreviate U n BR(xO)=UR for any R, oU n BR(xO) 
= (OQ)R , the point Xo E oU to be understood. 

Proof We follow the proof of Theorem 8.22. Assume initially that R ~ inf {Ro/4, 
height V"o} and write Mo=sup lui, M4=SUP u, m4=inf u, Ml = sup u, m1 =infu. 

ua9 U.a a.a Ua Ua 
Then, applying the estimate \8.70) to each of the functions M 4 - U, U - m4 in 
B4R(xO)' we obtain 

where M = sup u, m = inf u. Using the exterior cone condition we thus have 
(am.a (am.a 

M4 -M~C(M4 -Ml +k(R» 

m-m4 ~C(ml -m4 + k(R» 

so that by addition we get 

oSC u ~}' osc u + k(R) + osc u, 

where y=l-l/C, C=C(n,A/A.,vRo,q, V"o). The estimate (8.72) then follows 
from Lemma 8.23. 0 

If the hypotheses of Theorem 8.27 are satisfied and q(R) -+ 0 as R -+ 0, then the 
estimate (8.72) implies that u(xo)= lim u(x) is well defined. The following global 

%-%0 

continuity result then follows immediately from Theorems 8.22 and 8.27. 
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Corollary 8.28. In addition to the hypotheses of Theorem 8.27, let us assume that 
a satisfies an exterior cone condition at every point Xo E aa and that osc u -+ 0 

iJU" BR(J<O) 

as R -+ 0 for all Xo E aa. Then the function u is uniformly continuous in a. 

A uniform Holder estimate may also be obtained from Theorem 8.27 if the 
domain a is further restricted. Namely, let us say that a satisfies a uniform exterior 
cone condition on Te aa if a satisfies an exterior cone condition at every Xo E T 
and the cones VJ<o are all congruent to some fixed cone V. We can then assert the 
following extension of Theorem 8.24. 

Theorem 8.29. Let the operator L satisfy conditions (8.5), (8.6), let P E U(a), 
i = 1, ... , n, 9 E U/2(Q) for some q> n, and suppose that a sati~fies a uniform 
exterior cone condition on a boundary portion T. Then if U E W 1• 2(m satisfies 
equation (8.3) in a and there exist constants K. a:o > 0 such that 

oSC u ~ KRlJo VXoE T, R > 0, 
iJU"BR(J<O) 

it/ollows that U E ~(a u T) for some a:>0 and,for any a'e ea U T, 

(8.73) Ilullc'"(D') ~ C(sup lui + K + k) 
U 

where a:=a:(n. A/A., vd', V. q. a:o). C= C(n. A/A.. v. V. q. a:o• d'), 

d' =dist (a', ea- T) and k=A. -1(llfll,,+ 11911,,/2)' 

/fa'=a. d' is to be replaced by diam a. 

Proof Lety E a'. b=dist (Y. em <d'. By Theorem 8.22 with Ro=b. we have for 
any XE BIJ 

Now choose Xo E ca such that Ixo - yl = t5. By the estimate (8.72) with R = 2b. 
Ro = 2d'. we then obtain 

provided 2a: ~ a:o. Hence for any x E B~(y), we have (taking u(xo) = 0) 

(8.74) lu(x)-u(Y)I~C( I l+k+K) 
I I'" "" sup u . 
x-y D 
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By applying the estimate (8.72) again, with R = 21x - YI, Ro = 2d', we see that (8.74) 
will also hold for d' ~ Ix - yl ~ b. 0 

In effect, the preceding theorem combines separate Holder estimates in the 
interior and on the boundary into a partially interior or a global Holder estimate. 
Note that if u, VE WI.2(Q) and u-vE W~·2(Q), then oscu--->O as R--->O for 

on" BR(Y) 

all Y E cD provided v E C°(.Q), and osc u ~ KR 2 0 for all y E cD, R > 0 provided 
iJfl" SRI}') 

V E C20(Q). The remark following the proof of Theorem 8.24 is of course also 
pertinent with regard to the constants C in estimates (8.69), (8.70) and (X in estimates 
(8.72) and (8.73). 

An existence theorem for equation (8.3) for continuous boundary values follows 
from Theorem 8.3 and Corollary 8.28. 

Theorem 8.30. Lettheoperator Lsatisfr conditions (8.5), (8.6), (8.8)andp E Lq(Q). 
9 E UI2(Q) for some q>n, and suppose that D satisfies an exterior cone condition at 
each point of cD. Thenfor CfJ E CO(cQ), there exists a unique function U E WI~~ 2(D) n 
CO(Q) satisfying Lu=g+ DJi in D, u=CfJ on cD. 

Proof Let {CfJm} be a sequence in C\Q) converging uniformly to CfJ on cD. By 
Theorem 8.3 and Corollary 8.28 there exists a sequence {um} in W1.2(Q) n C°(.Q) 
such that LUm = 9 + DJi in D and Um = CfJm on ('D. By Theorem 8.1, we have 

sup Ium! -um21 ~sup ICfJm! -CfJm21---> 0 as m l , m 2 ---> oc. 
o iJO 

so that {um} converges uniformly to a function u E CO(D) satisfying U=CfJ on cD. 
Furthermore by the estimate (8.52) we then have, for any D' c cD, 

f ID(um ! -um2W dx ---> 0 as m l , m 2 ---> 00. 

0' 

Consequently U E WI~'/(Q) and satisfies equation (8.3) in D. The uniqueness of the 
solution U follows by applying Theorem 8.1 in domains D' c cD. 0 

The Wiener Criterion. Ifwe make no restriction on the domain D in the hypotheses 
of Theorem 8.30, then we would obtain from the above procedure a bounded 
function U E CO(D) n wt~/(D) such that Lu = g + DJi in D; in addition u(x)--+ 
l/J(xo) as x --+ Xo E aD if D satisfies an exterior cone condition at Xo' Any point 
Xo E aD where u(x) -+ l/J(xo) for arbitrary choice of l/J, g, fi is called a regular point 
for the operator L. Using the methods in [HR] or [LSW], one can show that the 
regular points for L coincide with those for the Laplacian as defined in Chapter 2. 
The barrier considerations of Chapter 6 are also applicable here. Note also, that it 
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follows from the proof of Theorem 8.27 that the exterior cone condition can be 
relaxed to the condition 

(8.75) 

More generally, by further development of the techniques of this section, we can 
establish the sufficiency of the Wiener criterion (2.37) for regular points. To ac
complish this, we first prove estimates similar to the weak Harnack inequalities, 
Theorems 8.18 and 8.26, but involving the gradient of the supersolution u. Let us 
consider first the interior case and suppose accordingly that the hypotheses of 
Theorem 8.18 are satisfied. It is then evident from the proof of Theorem 8.18 (in 
particular (8.52)) that, along with (8.47), we may also obtain the estimate 

( f )If(2-P) 

R2- n (u)-PIDuI 2 dx ~ C(i~! u + k(R)) 

B2R 

for 1 < p < n/(n - 2) and C = C(n, A/A., vR, q, p). But then by Holder's inequality, 

(8.76) R 1 - n f'DU ' ~ (R- n f(UyYf2(R 2- n f(U)-PIDU I2Yf2 

B2R B2R B2R 

~ C(inf u + k(R)) 
BR 

where C = C(n, A/A., vR, q) if p is fixed, say p = n/(n - 1). 
If we assume in addition the hypotheses of Theorem 8.26 and consider its proof, 

we see that u may be replaced by u;;; in (8.76), and hence 

(8.77) R 1 - n f IDu;;; I ~ c( inf u;;; + k(R)) 
Q"BR 

where C = C(n, A/A., vR, q). To proceed further, let us fix a cutoff function 
11 E q(B2R) such that 0 ~ 11 ~ 1,11 = 1 on BR , IDl1l ~ 2/R, and then insert v = 
112(m - u;;;) as a test function in (8.30), noting that 

m = sup u;;; if B4R n aQ # r/J, 
B2R 

which will be assumed in the following. Normalizing R = 1 and using the con
ditions (8.5), (8.6), we obtain 
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Hence, writing 

w = "u;;; 

and using (8.70) and (8.77), we have 

flDWl2 ~ C(m + k) f (u + IDul) dx 

Consequently, for general R we have the estimate 

(8.78) R2-n f IDwl2 ~ C(m + k)(i:!U;;; + k(R)} 

B2R 

We now recall from (2.36) that the capacity of the set BR - a is given by 

(8.79) cap (BR - a) = inf fIDVI2, 
I1El( 

where 

K = {vECA(~)lv = 1 on BR - U}. 

Since u;;; = m on B R - a and CA(B2R) is dense in wA· 2(B 2R), and using the factthat 
cap (BR - a) ~ CRn - 2 , we obtain from (8.78), 

(8.80) mR 2 -n cap (BR - a) ~ C inf (u;;; + k(R». 
BR 

Hence, if U is a solution of equation (8.3) in a and y = Xo E aa, we obtain, with the 
notation in the proof of Theorem 8.27, 

where 

(M4 - M)X(R) ~ C(M4 - Ml + l«R» 

(m - m4)x(R) ~ C(m1 - m4 + l«R», 

X(R) = R2 - n cap (BR - a). 

Thus, by addition, we obtain the oscillation estimate 

(8.81) osc U ~ (1 - X~») osc U + X~) osc U + l«R). 
DR D4R (iJU)4R 
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We leave it to the reader to check that if (2.37) holds for A = 1/4, then an estimate 
for the modulus of continuity of u at Xo is determined by iteration of (8.81), in an 
argument similar to that in Lemma 8.23 (Problem 8.8). We can thus state the follow
ing extension of Theorem 8.30. 

Theorem 8.31. Let the operator L satisfy conditions (8.5), (8.6), (8.8) and t E U(a), 
g E U1l(Q)for some q > n, and suppose that the Wiener condition (2.37) holds at each 
point of oQ. Then for qJ E CO( oQ), there exists a unique function u E Wl,;/(a) n CO(Q) 
satisfying Lu = g + Di t in Q, u = qJ on oQ. 

Finally, to conclude this section we remark that the results of Sections 8.6 to 8.10 
are still valid when the condition (8.6) on the coefficients b, c and d is replaced by 
b, c E Lq(Q), dE Lq/l(Q), q>n. Setting 

b=A. -2<1bl l +lcll)+A. -I d, 

v2 = Il bll q/ 2 

we then need to replace the quantity vR by VR" in the estimates of Theorems 8.17 
to 8.29. It is also possible in certain of the preceding local results to weaken both the 
uniform and the strict ellipticity of the operator L; (see [TR 4, 7], [FKS]). 

8.11. Holder Estimates for the First Derivatives 

When the principal coefficients in (8.3) are Holder continuous, the existence and 
regularity theory can be patterned after the Schauder theory of Chapter 6, and 
yields similar results. The starting point is again Poisson's equation, in the form 

Ifg, f E L OO(Q)andf E C"(Q) for some IX E (0, 1), it is easily shown thatthe Newtonian 
potential of the right-hand side, given by 

w(x) = f r(x - y)g(y) dy + f Dir(X - y)t(y) dy, 

n n 

is a weak solution of (8.82) and consequently the estimates of Section 4.5 will apply 
to weak solutions of (8.82); (see Problem 7.20). In particular, we recall the interior 
and boundary estimates (4.45) and (4.46). The considerations of Lemma 6.1 show 
that the same estimates hold for weak solutions of 

where L o is a constant coefficient elliptic operator. 
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We can now apply the perturbation technique of Section 6.1 to the equation 

(8.83) Lu = g + DJi, 

where L is given by (8.1). For any point Xo E Q, we "freeze" the coefficients aij at Xo 

and rewrite the equation as 

(8.84) aij(xo)Diju = Di{(aij(xo) - aij(x»Dju - bi(x)u} 

where 

- ei(x)DiU - d(x)u + g + DJi 

= G(x) + DiFi(x), 

Fi(x) = (aij(xo) - aij(x»Dju - bi(x)u + P(x) 

G(x) = -ei(x)Diu - d(x)u + g(x). 

With Xo fixed, this equation is of the form (8.82) with P = Fi, g = G. 
Let us assume in the following that L is strictly elliptic, satisfying (8.5), the coef

ficients aij, bi E C~(Q), ei , d, gEL CO(Q), and f E C~(Q). Suppose 

(8.85) max {Iaij, bilo,~;D' lei, dIO;D} ~ K. 
i,j= 1, ... ,n 

Then we assert the following interior and global estimates: 

Theorem 8.32. Let u E C1'~(Q) be a weak solution of(8.83) in a bounded domain Q. 
Thenfor any subdomain Q' ceQ we have 

(8.86) lull.a;D' ~ c(lulo;D + Iglo;D + Iflo,a;D)' 

for C = C(n, A., K, d'), where A. is given by (8.5), K by (8.85) and d' = dist (Q', oQ). 

Theorem 8.33. Let u E Cl.a(Q) be a weak solution of (8.83) in a Cl.a domain Q, 
satisfying u = qJ on oQ, where qJ E Cl,a(Q). Then we have 

(8.87) lult,a ~ C(lulo + IqJI1,a + Iglo + IIlo,a)' 

for C = C(n, A., K, oQ), where A. and K are as above. 

The proof of these results is essentially the same as that of Theorems 6,1 and 6.6, 
but is based now on the estimates (4.45) and (4.46), applied to (8.84). We note that 
the proof of (8.87), which is reduced to the boundary estimate (4.46), requires a 
preliminary flattening of the boundary. Since the hypotheses concerning (8.83) are 
invariant under C1, a mappings, it suffices that the domain Q be of class C 1. a, and 
thus Theorem 8.33 is stated for domains and boundary values in this class. The 
dependence on oQ of the constant C in (8.87) is through the C 1 ,a norms of the 
mappings that flatten the boundary. 
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The global estimate in Theorem 8.33 leads directly to the basic existence 
theorem for (8.83). 

Theorem 8.34. Let Q be a cI,a domain and L an operator satisfying (8.5), (8,8) and 
(8.85) with K < 00. Let gEL OO(Q), fi E C"'(Q) and qJ E cI,a(Q). Then the generalized 
Dirichlet problem 

(8.88) Lu = 9 + DJi in Q, u = qJ on aQ 

is uniquely solvable in Cl,a(Q). 

Proof. Argument by approximation. Let Lk be a sequence of operators with 
sufficiently smooth (say C2(Q)) coefficients a~, bL cL dk, such that a~ ..... aii, 
bi ..... bi uniformly in Q and d ..... ci, dk ..... d in LIas k ..... 00; it can be assumed that 
the approximating coefficients also satisfy (8.5), (8.8) and (8.85). In addition, let 
fi. gk' qJk E C3(Q), and as k ..... 00 let fi ..... fi with I fUo, a ~ C Ifi 10, a' qJk ..... qJ with 
IqJklI,a ~ clqJiI,a' and gk ..... gin LI(Q) with Igklo,Q ~ cllglloo;Q' Finally, let {Qk} 
be a sequence of C2 , '" domains exhausting Q, such that aQk ..... aQ and the surfaces 
aQk are uniformly in Cl,"', (see Problem 6.9). 

Under these assumptions, the smooth approximating Dirichlet problems 

(8,89) Lku = gk + DJl in Qk' u = qJk on aQk 

have unique c2,a(Qk) solutions satisfying the cl,a estimate (8.87). Since Theorem 
8.16 implies 

luklo ~ sup lukl + C(lgklo + l.hlo), 
ilQ 

we infer the uniform CI,,,, estimate 

(8.90) lukII,a;Qk ~ C(lqJkll,a;Qk + Igklo;Qk + IfkIO,a;Q.) 

~ C(lqJII,a;Q + Iglo,Q + IfIO,a;Q) 

where the constant C is independent of k. Letting k ..... 00 in the weak form of (8.83), 
we obtain in the limit a (unique) CI,"'(Q) weak solution u of (8,88), which also 
satisfies (8.90). This solution is also unique within the larger class of WI, 2(Q) 
functions for which u - qJ E W~' 2(Q), by virtue of Theorem 8.1. 0 

The estimate (8.87), which was stated for weak cI,a solutions, can now be seen 
to hold for WI.2(Q) solutions under the same hypotheses. Let UE WI,2(Q) be a 
solution of(8.83) satisfying the hypotheses of Theorem 8.33, with u - qJ E W~' 2(Q); 
then u is bounded (by Theorem 8.16) and for a sufficiently large positive constant (T, 
u is also the unique C I, 2(Q) solution v of the generalized Dirichlet problem 

(L - (T)v = 9 + Di fi - (TU in Q 

v = qJ on aQ. 
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Thus, we have: 

Corollary 8.35. Under the hypotheses of Theorem 8.33, ifu E W l ,2(D) and u - ({J E 

WA,2(0), the same conclusion (8.87) remains valid. 

Local C l ,,, regularity can be derived similarly by first approximating the solu
tion u by smooth functions. In fact, we have the following extension of Corollary 
8.35, the details of which are left to the reader. 

Corollary 8.36. Let T be a (possibly empty) Ct." boundary portion of a domain D, 
and suppose u E W l , 2(D) is a weak solution of (8.83) such that u = 0 on T (in the 
sense of W 1,2(D». Then UE C1'''(D u T), andfor any D' c cD u T we have 

(8.91) lull,,,;U' ~ C(lulo;u + Iglo;u + IIlo,,,;u) 

for C = C(n, .t, K, d', T) where .t and K are as in Theorem 8.32 and now d' = 
dist (0', oD - T). 

In this result, if ({J E Cl'''(Q) and u = ({J on T (in the sense of W1.2(D», then 
1({Jll,,,;U appears in the right member. This is seen by simply replacing u by u - ({J 

and applying (8.91). 

Remark. In all the results of this section, if g E U(D), p = n/(l - a), the same 
conclusions are valid provided Ilgllp;u replaces Iglo;u throughout. The correspond
ing proofs are essentially unchanged; (see Remark at the end of Section 4.5). 

8.12. The Eigenvalue Problem 

The Fredholm theory, as expressed by Theorem 8.6, guarantees that an elliptic 
operator of the form (8. 1) will have at most a countable set of eigenvalues. We prove 
directly in this section that a self-adjoint operator has eigenvalues and consider 
some of their basic properties. Although the existence of eigenvalues follows from 
standard functional analysis, we consider it worthwhile to go through the demon
stration of existence for the special case under consideration. 

Let us now suppose that the operator L is self-adjoint so that it can be written as 

where [aij] is symmetric. The associated quadratic form on H = WA,2(0) is then 
given by 

.P(u, u) = f(aijDiuDju + 2biuDiu + cu2) dx. 

u 



8.12. The Eigenvalue Problem 

The ratio 

J(u) = .5t'(u, u), 
(u, u) 
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u;j:. 0, uEH, 

is called the Rayleigh quotient of L. We commence by studying the variational 
problem of minimizing J. First, it is clear by Lemma 8.4 that J is bounded from 
below, so that we may define 

(8.92) a = inf J. 
H 

We claim now that a is the minimum eigenvalue of Lon H, that is, there exists a 
nontrivial function u E H such that 

(8.93) Lu + au = 0, 

and a is the smallest number for which this is possible. To show this we choose a 
minimizing sequence {urn} c H such that lIurn l1 2 = 1 and J(urn) --+ a. By (8.5) and 
(8.6), we have that {urn} is bounded in H, and hence by the compactness of the 
imbedding H --+ L 2(U) (Theorem 7.22), a subsequence, which we take as {urn} itself, 
converges in L 2(Q) to a function u with lIull2 = 1. Since Q(u) = .5t'(u, u) is quadratic 
we also have for any I, m 

so that 

( ul - Urn) IluI + Urnl1 2 
Q 2 ~ -!<Q(urn) + Q(UI)) - a 2 2 --+ ° as m, I --+ 00. 

Again using Lemma 8.4, we see that {urn} is a Cauchy sequence in H. Hence Urn --+ u 
in H, and moreover Q(u) = a. The verification of the Euler equation (8.93) is 
standard in the calculus of variations: It follows by setting 

!(t) = J(u + tv) 

for v E H and calculating 

1'(0) = 2(.5t'(u, v) - a(u, v)) = 0. 

The number a is easily seen to be the minimum eigenvalue since any smaller eigen
value would contradict the formula (8.92). If we arrange the eigenvalues of L in 
increasing order a I, a 2, ... , and designate their corresponding eigenspaces by 
VI' V2 , ••• , we may characterize the higher eigenvalues of L through the formula 
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The solvability of these variational problems is established essentially as in the case 
m = 1 and, furthermore, the process (8.94) is seen to exhaust all possible eigenvalues 
of L, the resulting eigenfunctions forming a complete set in L 2(Q). We can therefore 
assert: 

Theorem 8.37. Let L be a self-adjoint operator satisfying (8.5) and (8.6). Then L has 
a countably infinite discrete set of eigenvalues, L = {O'm}, given by (8.94), whose 
eigenfunctions span H. 

Solutions of the Dirichlet problem for L can now be represented by eigenfunc
tion expansions according to standard procedures; (e.g., see [CH]). We may also 
apply the preceding regularity considerations of this chapter to eigenfunctions. In 
particular, they belong to L ""(Q) n C"(Q) for some ex > 0, by virtue of Theorems 
8.15 and 8.24; and to C"(Q) if Q is sufficiently smooth (Theorem 8.29). If the coef
ficients of L belong to C""(Q), then so also will the eigenfunctions (Corollary 8.11). 

To complete this section we observe a special property of the minimum 
eigenvalue 0' 1. 

Theorem 8.38. Let L be a self-adjoint operator satisfying (8.5) and (8.6). Then the 
minimum eigenvalue is simple and has a positive eigenfunction. 

Proof. . If u is an eigenfunction of 0' l' then it follows from the formula (8.92) that I u I 
is one also. But then by the Harnack inequality, Theorem 8.21, we must have lui 
positive (a.e.) in Q and hence 0'1 has a positive eigenfunction. This argument also 
shows that the eigenfunctions of 0' I are either positive or negative and hence it is 
impossible that two of them are orthogonal, whence VI must be one-dimensional 
and 0' 1 simple. 0 

Notes 

The Hilbert space or variational approach to the Dirichlet problem for linear, 
elliptic equations can be traced back as far as the works of Hilbert [HI] and 
Lebesgue [LE] for Laplace's equation. During this century it has been developed 
by many authors including, in particular, Friedrichs [FD I, 2] and Garding [GA]. 
The reader is referred to the books [AG], [BS] and [FR] for further discussion. 
The generalized Dirichlet problem, which we treat in Section 8.2, was also con
sidered by Ladyzhenskaya and Vral'tseva [LV 4] and Stampacchia EST 4,5]. 
These authors derived the Fredholm alternative, Theorem 8.6. but their existence 
and uniqueness results were restricted by smallness or coercivety conditions. The 
weak maximum principle, Theorem 8.1, although a simple consequence of the 
weak Harnack inequality in [TR I]. appears to have been first noted in the 
literature by Chicco [CI I]; (see also [HH]). We have followed the proof of 
Trudinger [TR 7] which has the advantage of being readily extended to non
uniformly elliptic equations. Given the Fredholm alternative, the existence result, 
Theorem 8.3, is an immediate consequence of the weak maximum principle. 
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Higher order differentiability theorems for weak solutions, as in Sections 8.3 
and 8.4, were proved by various authors including Friedrichs [FD 2], Browder 
[BW I], Lax [LX] and Nirenberg [NI I, 2]; see also [AG], [BS] and [FR]. 

The global bound, Theorem 8.15. appears in the works [LU 4] and EST 4, 5] 
and is an extension of an earlier version by Stampacchia EST I, 2]. Our proof, 
through the Moser iteration technique, follows that of Serrin ESE 2]. The apriori 
bound, Theorem 8.16, is due to Trudinger [TR 7]. 

The local pointwise estimates, which comprise the rest of Chapter 8, all stem 
from the pioneering work of De Giorgi [DG I], where the special cases of Theorems 
8.17 and 8.22 for equations of the form 

(8.95) 

were established; (see also Nash [NA)). De Giorgi's work was extended to linear 
equations, of the form treated here, by Morrey [MY 4], Stampacchia [ST 3] and 
to quasilinearequations in divergence form by Ladyzhenskaya and UraJ'tseva [LU 
2]. An interesting new proof of De Giorgi's result was proposed by Moser [MJ I]. 
This proof can also be extended to more general classes of equations (see [LU 4]), 
and indeed could have been employed by us to derive Theorems 8.22, 8.24, as well 
as the boundary estimate, Theorem 8.29, (see Problem 8.6). A Harnack inequality 
for weak solutions of equation (8.95) was established by Moser[MJ 2] and extended 
to quasi linear equations in divergence form by Serrin ESE 2] and Trudinger [TR I]. 
We have based our treatment oflocal estimates in Theorems 8.18, 8.26 on the weak 
Harnack inequality derived in [TR 1]. We note here that, in the case of equations in 
two variables, the Holder estimate and Harnack inequality can be .deduced by 
simpler methods; see [MY 3], [BN] and Problem 8.5. For sharp results in the case 
of two variables see [PS] and [WI 3]. In Section 8.10, the treatment of Theorems 
8.25 to 8.30 follows [TR 1] while the proof of the sufficiency of the Wiener criterion 
is adapted from Gariepy and Ziemer [GZ 2]. 

The methods and results of Sections 8.1 and 8.2 can be extended to treat other 
boundary value problems. In particular, we can consider a generalized version of 
the mixed boundary value problem 

(8.96) 

Lu=DiP+g in D 

u=CfJt on cD-r 

Nu=aij(x)v;Dp +bi(x)viu + a(x)u = CfJ2 on r 

where r is a relatively open C t portion of cD, and v=(v t , .•. vn) is the outer 
normal to cD on r. For CfJt E W1.2(Q) and a, CfJ2 E L2(T), a function u E W1.2(Q) 
is called a generali::ed solution of the boundary value problem (8.96) if u - CfJt E 
W~·2(D u T) and 

(8.97) 2(u, v) = f (fi Di V - gv) dx + f (CfJz - fi Vi - au) v ds, 
u r 
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for all v E W b' 2(Q u n. Here Wb' 2(Q u n denotes the closure of Cb(Q u n in 
W 1.2(Q). We again obtain a weak maximum principle; namely, if conditions (8.5), 
(8.6) hold, together with the inequality (cf. (8.8» 

(8.98) J(dv- biDiv) dx- J (JV ds~O V'v~O, VE Cd(Q un, 
o r 

then any function UE W1.2(Q), satisfying f(u, v) +J (Juv ds~O for all non-negative 
r 

VE Wd,2(Q (l n, must either satisfy sup u~sup u+ or be a positive constant. 
o r 

It follows then that generalized solutions of (8.96) are unique provided either 
r"# vQ,(J + vibi =i' Oonr,orLI "# O.Ifalloftheselastthreeconditionsarefulfilled, 
then generalized solutions of (8.96) must only differ by a constant. An analogue 
of the existence theorem, Theorem 8.2, can again be concluded from a Fredholm 
alternative. Maximum principles for mixed boundary value problems are treated 
in the papers [CI 3] and [TR 11]; in the latter work the above assertions are 
derived for a general class of non-uniformly elliptic equations. 

Finally, we remark that through an approach of Campanato, depending on 
certain integral characterizations of Holder spaces, the Schauder theory may be 
derived directly from the Hilbert space theory and thereby independently of the 
potential theory of Chapter 4; (see [CM 2], [GT 4]). 

Problems 

8.1. Show that in the weak maximum principle, Theorem 8.1, provided u~O on 
cQ, condition (8.8) can be replaced by either the condition 

(8.99) J(dv+ciDiV) dx~O \t'v~O, E q(Q), 
o 

or the condition 

(8.100) [_: _: J~o a.e. (Q); (see Theorem 10.7) 

8.2. Let U E W1.2(Q) be a weak solution of the equation Lu=g+ DJi in Q, 

where L satisfies the conditions (8.5), (8.6) and g,P E L2(Q), i= I, ... , n. Show 
that for any subdomain Q' ceQ, we have 

(8.101) 

where C = C(n, A/A., v, d'), d' = dist (Q', vQ). 
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8.3. Show that if the matrix a= [aii] is symmetric then the constant C in the 
Harnack inequality. Theorem 8.20, can be estimated by 

8.4. Using Theorem 8.8 and regularization, (as in Section 7.2), show that Theorem 
3.9 is valid for functions U E W1.2(Q). Hence, by considering the function 

u(x, y) = Ixyllog (Ixl + Iyl), 

in the domain 

demonstrate the sharpness of Theorem 3.9. 

8.S. (a) Let u be a function in CI(BR(O», BR(O) c ~2, and write for 0 < r < R, 

w(r)=osc u, 
ilBr 

D(r)= flDul2 dx 
Br 

where 8. = 8.(0). If w is non-decreasing. show that for 0 < r < R. 

w(r) ::;; JnD(R)/log(R/r). 

(b) Prove the Harnack inequality for divergence structure equations in two 
variables: 

Lu= Dj(aijDpH bjDju =0, ;,j= 1,2 

satisfying conditions (8.5) and (8.6), as follows. If the solution u is positive in 
the disc BR(O) c ~2, show that the Dirichlet integral of the function v = log u is 
bounded in every disc 8.(0). 0 < r < R. in terms of Aj) .• v. rand R. (See the case 
fJ = - I in the proof of Theorem 8.18). Apply the weak maximum principle. 
Theorem 8.1. and part (a) to obtain the result 

C-Iu(O)::;;u(x)::;;Cu(O) 

for Ixl ~ R/2. where C= CO .• A. R.) (Cf. [BN].) 

8.6. (a) Using the hypotheses and notation of Theorem 8.22, show that the 
functions 

M4 - m4 + l«R) 
WI = log 2(M4 _ u) + l«R)' 

I M 4 - m4 + l«R) 
"'2 = og 2(u _ m4) + l«R) 
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are subsolutions in B4R of equations with structures similar to equation (8.3). (Cf. 
the proof of Theorem 8.16). 

(b) By applying Theorem 8.17 to the functions WI' W2 in part (a), using the 
Poincare inequality (7.45) and the case fJ = -1 in the proof of Theorem 8.18, give 
an alternative proof of the Holder estimate (Theorem 8.22). Note that one of the 
functions WI' W2 is nonpositive on a set S such that lSI ~ tIB4RI. 

8.7. Let 0 be a bounded measurable set in ~n. Prove that 

1011 - 2/n ~ y(n) cap 0, 

where y(n) is the constant in the Sobolev inequality (7.26) when p = 2. 

8.8. Prove that (8.81) implies a modulus of continuity at the boundary point Xo. 

8.9. Using Theorem 8.16, show that the existence and uniqueness theorem, 
Theorem 8.3, holds for unbounded domains 0 with finite measure. (Note that the 
compactness results of Theorem 7.22 do not necessarily hold for such domains 
[AD].) 



Chapter 9 

Strong Solutions 

Until now in this work we have concentrated on either weak or classical solutions 
of second-order elliptic equations; a weak solution need only be once weakly 
differentiable while a classical solution must be at least twice continuously differ
entiable. The formulation of the weak solution concept depended on the operator 
L under consideration having a "divergence form" while the concept of classical 
solution made sense for operators with completely arbitrary coefficients. In this 
chapter our concern is with the intermediate situation of strong solutions. For 
operators in the general form 

(9.1) Lu = di(x)Diju + bi(x)Djtl + c(x)u 

with coefficients aii, bi, c, where i,j = 1, ... , n, defined on a domain U c IR" and a 
function .r on U, a strong solution of the equation 

(9.2) Lu = .r 
is a twice weakly differentiable function on U satisfying the equation (9.2) almost 
everywhere in U. The attachment of such a solution to prescribed boundary values 
on aU in the Dirichlet problem may be considered in a generalized sense analogous 
to that in Chapter 8 or in the classical sense of Chapter 6, where they are taken on 
continuously. With the aid of a regularity argument, we have already derived in 
Chapter 8 an existence theorem (Theorem 8.9) for strong solutions that are not 
necessarily classical. In this case, the boundary values are assumed in the gener
alized sense. However, the results of Section 8.10, in particular, Theorem 8.30, 
provide conditions for the continuous assumption of boundary values. 

This chapter can be viewed as consisting of two strands. The first is the develop
ment ofa theory of solutions in Sobolev spaces W 2,P(U), p > 1 analogous to the 
Schauder theory in the Holder spaces C2 '''(Q); this theory is generally known as the 
" U theory" and the relevant U estimates are themselves of great importance in 
elliptic theory. The other strand is analogous to our work in Chapters 3 and 8 on 
maximum principles and local properties of solutions, and the pointwise estimates 
established in Section 9.7 will also be important in Part II, in particular for the 
treatment offully nonlinear equations in Chapter 17. The natural solution space for 
these considerations is the Sobolev space W 2 ,"(U) and, indeed, the combination of 
the two strands in this chapter facilitates an attractive theory in this space. 



220 9. Strong Solutions 

9.1. Maximum Principles for Strong Solutions 

In this section, we treat the extension of the classical maximum principle in Chapter 
3 to strong solutions, in particular to solutions in the Sobolev space Wfo'c"(Q). 
Recall that an operator L of the form (9.1) is elliptic in the domain Q if the coef
ficient matrix d = [aij] is positive everywhere in Q. For such operators we will let 
~ denote the determinant of d and set ~* = ~ 1/" so that ~* is the geometric mean 
of the eigenvalues of d and 

0< A ~ ~* ~ A 

where as before A, A denote, respectively, the minimum and maximum eigenvalues 
of d. Our conditions on the coefficients of L and inhomogeneous term f in the 
equation (9.2) will now take the form 

(9.3) Ibl/~*, fI~* E L"(Q), c ~ 0 in Q. 

The following weak maximum principle, of A. D. Aleksandrov, can now be 
formulated as an extension of the apriori bound, Theorem 3.7. 

Theorem 9.1. Let Lu ~ f in a bounded domain Q and u E CO(n) n Wfo'c"(Q). Then 

(9.4) sup u ~ sup u+ + CIIII~*IIL"(D) 
U iJU 

where C is a constant depending only on n, diam Q and IIb/~*IIL"(m' 

The Sobolev embedding theorem, in particular Corollary 7.11, guarantees that 
functions in Wfo'c"(Q) are at least continuous in Q. If II is not also assumed continuous 
on Q in the hypotheses of Theorem 9.1, the conclusion (9.4) can be modified by 
replacing sup II + by lim sup u + . 

iJU x~iJU 

The proof of Theorem 9.1 depends upon the notions of contact set and normal 
mapping and certain aspects of it will be important for later considerations. If II is an 
arbitrary continuous function on Q, we define the IIpper contact set of u, denoted 
r+ or r:, to be the subset of Q where the graph of lilies below a support hyperplane 
in [R" + 1, that is, 

(9.5) r+ = {y E Qll/(x) ~ u(y) + p. (x - y) for all x E Q, 

for some p = p(y) E [R"}. 

Clearly, u is a concave function in Q if and only if r+ = Q. When u E C1(Q) we 
must have p = Du(y) in (9.5) as any support hyperplane must then be a tangent 
hyperplane to the graph of u. Furthermore, when u E C2(Q), the Hessian matrix 
D2u = [Diju] is nonpositive on r+. In general, the set r+ is closed relative to Q. 
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For an arbitrary function U E CO(U) we define the normal mapping, X(Y) = X,,(Y) 
of a point y E Q to be the set of" slopes" of support hyperplanes at y lying above the 
graph of u, that is, 

(9.6) X(y) = {p E IW Iu(x) :::;;; u(y) + p. (x - y) for all x E Q}. 

Clearly X(y) is nonempty if and only if y E r+. Furthermore, when II E C 1(Q), then 
X(y) = Du(y) on r+ ; that is, X is the gradient vector field of u on r+. As a useful 
example of a nondifferentiable function u, let us take Q to be a ball B = BR(z) and II 
to be the function whose graph is a cone with base Q and vertex (z, a) for some 
positive a E IR, that is, 

( Ix - Zl) u(x) = a 1 - R . 

Then, we have 

(9.7) {
-a(Y - z) 

X(y)= Rly-zl 

BaIR(O) 

First, we prove: 

(9.8) 

where d = diam Q. 

for y"# z 

for y = z. 

Proof. By replacing u with II - sup u, it suffices to assume II :::;;; 0 on oQ. The n
au 

dimensional Lebesgue measure of the normal image of Q is given by 

(9.9) I X(Q) I = Ix(r+)1 
= IDII(r+)1 

:::;;; fldet D2uI 

r+ 

since D2u :::;;; 0 on r+. Formula (9.9) can be realised as a consequence ofthe classical 
change of variables formula by considering, for positive e, the mapping X. = X - d, 
whose Jacobian matrix D211 - d is then strictly negative in a neighbourhood of r+, 
and by subsequently letting e -+ O. Furthermore, the mapping X. is readily shown to 
be one-to-one on r+, so that the equality holds in (9.9). 
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Let us now show that u can be estimated in terms of I X(Q) I. Suppose that u takes 
a positive maximum at a point y E Q, and let k be the function whose graph is the 
cone K with vertex (y, u(y)) and base oQ. Then Xk(Q) c xiQ) since for each sup
porting hyperplane to K, there exists a parallel hyperplane tangent to the graph of u. 
Now let k be the function whose graph is the cone K with vertex (y, u(y)) and base 
Biy)· Clearly, XI«.Q) c Xk(Q); and, consequently, 

But then using (9.7) and (9.9), we have 

( u(y))n f 
Wn d :::;; Idet D2ul 

r+ 

and hence 

as required. 0 

The special case of the estimate (9.4), when b = 0, follows from Lemma 9.2 via 
the matrix inequality 

(9.10) ( trace AB)n 
det A det B :::;; n ' A, B symmetric ~ 0. 

Taking A = - D 2u, B = [aij], we therefore have on r+ 

We formulate the resulting estimate as follows for later reference. 

Lemma 9.3. For u E C2(Q) n CO(Q), we have 

(9.11) sup u :::;; sup u + d1/n II d~;u II 
(} iJ(} nWn :::0 L"( r+ ) 

The full estimate (9.4) is derived from the following generalization of Lemmas 
9.2 and 9.3. 
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Lemma 9.4. Let 9 be a nonnegative, locally integrable function on IR". Thenfor any 
U E C2(Q) n C°(Q), we have 

(9.12) f 9 ~ f9(DU)ldet D 2uI 
BM(O) r+ 

where 

M = (sup U - sup u)/d, d = diam Q. 
u au 

Proof. The proof of Lemma 9.4 follows those of Lemmas 9.2 and 9.3, which cor
respond to the special case 9 == 1. Instead of (9.9), we have the more general formula 

(9.13) f 9 ~ f9(DU)ldet D2uI 
lu(U) r+ 

and since X,(Q) c Xu(Q) the estimate (9.12) follows by virtue of (9.7) and (9.10). 0 

Let us now suppose that u E CO(Q) n C2(Q) and satisfies Lu ~ f in Q with 
condition (9.3). For the weight function 9 we take 

for some J.L > 0, to be fixed later. Then using Holder's inequality, we have, in 
Q+ = {x E Qlu(x) > O}, 

Hence, by (9.12) 

f 9 ~ ~" f<lb l" + J.L-"Ifl")/~· 
BM r+ 
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The integral on the left-hand side can be estimated using a further consequence of 
Holder's inequality, 

Accordingly, we obtain 

If f ¢ 0, we choose J1. = II f I~· II Ln( r+) thus to obtain 

while for f == 0, we let J1. ~ ° so that (9.14) is again satisfied. 
This establishes the estimate (9.4) for functions U E CO(m n C2(D). The 

extension to functions U E COm) n W~"(D) can be carried out by an approximation 
argument. Suppose first that L is uniformly elliptic in D with the ratio Ibl/A also 
bounded. Let {um} be a sequence of functions in C2(D) converging in the sense of 
Wr;;."(D) to u. For arbitrary e > 0, we can then assume that Um converges to U in 
W2, "(D.) and Um ~ e + sup U on aD. for some domain D. c: c: D. Consequently, by 

"0 
applying (9.4) to the functions 11m (with D replaced by D+), we obtain 

and hence, letting m ~ 00 and using the fact that {um } converges uniformly to II on 
D .. we have 

(9.15) sup U ~ e + sup u+ + CllfI~·IILn(o.) 
O. iJfI 

from which (9.4) follows as e ~ 0. 
To remove the above restrictions on L, we consider for" > 0, the operators 

L" = ,,(A + Ibl)A + L. 

We obtain accordingly from (9.15), 

sup II ~ e + sup u+ + c{11 ,,(A ~!bl)AU II + II I. II}· 
fl. iJfI " Ln(fI.) ;;p Ln(fI.) 
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so that letting 1'/ --+ 0 and using the dominated convergence theorem, we get in
equality (9.15) again. Theorem 9.1 finally follows by letting e --+ O. 0 

Note that the estimate (9.14) does not yield (9.11) when b = O. In fact, the con
stant in (9.11) can be improved, and a corresponding sharp improvement of (9.14) 
can be obtained by explicitly integrating the function g and optimizing the choice of 
/1; (see Problems 9.1, 9.2). Also the dependence on diam Q can be replaced by a 
dependence on I Q I, where Q is the convex hull of Q; (see Problem 9.3). 

The case f == 0 in Theorem 9.1 yields an extension of the weak maximum 
principles, Theorem 3.1 and Corollary 3.2. The following uniqueness result for the 
Dirichlet problem for strong solutions which extends Theorem 3.3, also follows 
automatically. 

Theorem 9.5. Let L be elliptic in the bounded domain Q and satisfy (9.3). Suppose that 
u and v are functions in W?o'c"(Q) n CO(Q) satisfying Lu = Lv in Q, U = von aQ. Then 
u = v in Q. 

We can also deduce from the weak maximum principle a generalization of the 
strong maximum principle, Theorem 3.5. As in the hypotheses of Theorem 3.5, we 
assume that the operator L is uniformly elliptic in Q and that I b I /.Ie, c/.Ie are bounded. 

Theorem 9.6. If u E W?o'c"(Q) satisfies Lu ;:, 0 in Q and c = 0 (c ~ 0), then II cannot 
achieve a maximum (nonnegative maximum) in Q unless it is a constant. 

Proof. If u is differentiable we can follow the proof of Theorem 3.5 with Theorem 
9.1 being used in place of Corollary 3.2. In general a slight modification ofthe proof 
of Theorem 3.5 suffices. If we assume, contrary to the theorem, that u is noncon
stant in Q and assumes its maximum M in Q, there must exist concentric balls 
Bp(Y) c BR(y) c Q such that u < Min Bp(Y) and u(xo) = M for some Xo E BR(Y)' 
But then using Theorem 9.1 and the auxiliary function v defined in the proof of 
Lemma 3.4 with v(xo) = 0, we have M - u - w > 0, for some e > 0, in the annular 
region A = BR(y) - B/y), which is a contradiction at x = Xo' 0 

9.2. LP Estimates: Preliminary Analysis 

Our route to the basic U estimates of this chapter is via interpolation. In this sec
tion, we develop some preliminary analysis: namely, a cube decomposition pro
cedure, also necessary for the Holder estimates in Section 9.7; and the Marcin
kiewicz interpolation theorem that is applied in the next section. 
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Cube Decomposition 

Let Ko be a cube in ~II, f a nonnegative integrable function defined in Ko and t a 
positive number satisfying 

By bisection of the edges of Ko, we subdivide Ko into 2" congruent subcubes with 
disjoint interiors. Those subcubes K, which satisfy 

(9.16) f f ~ tiKI, 

K 

are similarly subdivided and the process is repeated indefinitely. Let 9' denote the 
set of subcubes K thus obtained that satisfy 

f f > tiKI, 
K 

and for each K E 9' denote by K the subcube whose subdivision gives K. Since 
IKI/IKI = 2", we have for any K E 9'. 

(9.17) t < I~I f f ~ 2"t. 
K 

Furthermore, setting F = U K and G = Ko - F, we have 
KeY 

(9.18) f ~ t a.e. in G. 

The last inequality (9.18) is a consequence of Lebesgue's differentiation theorem 
[SN], as each point of G lies in a nested sequence of cubes satisfying (9.16) with 
diameters tending to zero. 

For the pointwise estimates in Section 9.7, we also need to consider the set 

which satisfies, by (9.16), 

(9.19) f f ~ tiFI. 

1 
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In particular, when f is the characteristic function Xr of a measurable subset T of 
Ko, we obtain from (9.18) and (9.19) that 

(9.20) IT! = IT (l FI ~ tiFI. 

9.3. The Marcinkiewicz Interpolation Theorem 

Let f be a measurable function on a domain Q (bounded or unbounded) in jRn. The 
distriblltion jimction J1 = J1 f of f is defined by 

(9.21) J1(t) = J1it) = l{xEQlf(x) > t}1 

for t > 0, and measures the relative size off. Note that J1 is a decreasing function on 
(0, 00). The basic properties of the distribution function are embodied in the follow
ing lemma. 

Lemma 9.7. For any p > 0 and If IP E L I(Q), we have 

(9.22) J1(t) ~ t- P flflP, 

o 
00 

(9.23) f If IP = p frP- 1 J1(t) dt. 

o 0 

Proof. Clearly, 

J1(t)tP ~ f I IIP 

Ifl~t 

for all t > 0 and hence (9.22) follows. Next, suppose that f E L I(Q). Then, by 
Fubini's theorem, 

l[(xJi 

f I II = f f dt dx 
Q Q 0 

00 

= f J1(t) dt, 

o 

and the result (9.23) for general p follows by a change of variables. 0 
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We prove the Marcinkiewicz interpolation theorem in the following restricted 
form: 

1beorem 9.S. Let T be a linear mapping from U(Q) n U(Q) into itself, 1 ~ 
q < r < 00 and suppose there are constants TI and Tz such that 

(9.24) (t) :!( (TIll fIIq)q 
IlT/""" t ' 

for all f E U(Q) n U(Q) and t > O. Then T extends as a bounded linear mapping 
from U(Q) into itselffor any p such that q < p < r, and 

for allf E U(Q) n L'(Q), where 

1 0( 1-0( 
-=-+-
p q r 

and C depends only on p, q and r. 

Proof. For f E U(Q) n Lr(Q) and s > 0, we write 

where 

Then 

and hence 

fl(x) = {{X) 

fz(x) = {~.(X) 

if If(x)\ > s 

if I f(x) I ~ s, 

if If(x)1 > s 

iflf(x)1 ~ s. 

Il(t) = IlT/(t) ~ IlT/,(t/2) + IlT/it/2). 

~ c~lr f1fdq + c~2r f1f2 1'. 
u u 
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Therefore, by Lemma 9.7 we have 

ao 

II TflP = P JtP-IJl(t) dt 
a 0 

ao 

~P(2Tl)q ItP- 1-q( Ilflq)dt 
o III >. 

ao 

+ p(2T2Y Itp - 1- r ( I Iflr) dt 
o III", 

Let us now choose S as a function of t; in particular, we take t = As for some 
positive number A to be fixed later. Then, we have 

But 

ao 

IITflP ~ P(2T1)QArq Isr1-q( J If19) ds 
a 0 III>. 

ao 

+ P(2T2Y AP-r I sP-l-r( I If Ir) ds. 
o III'" 

ao III 

Isr1-q( I Iflq) ds = IIfl9 I sr l -9 ds 
o III>. a 0 

= _1_ IlflP, 
p-q 

a 

and, similarly, 

ao ao 

Isr1-r( I Iflr)ds= Ilfl'(IsP-l-r ds) 
o III'" a III 

=_1 II/IP. 
r-p 

a 
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Consequently, 

for any positive number A. By taking the value of A for which the expression in 
braces is a minimum, namely, 

we thus obtain 

II Tfll ~ 2 -p- + -p- TiT~-"llfII ( )
l1P 

P p_q r-p P 

as required, with C = 2{p(r - q)/[(p - q)(r - p)]}lIP in the statement of the 
theorem. 0 

9.4. The Calderon-Zygmund Inequality 

In this section we establish the basic U estimates for Poisson's equation through a 
further consideration of the Newtonian potential, previously treated in Chapter 4. 
Let 0 be a bounded domain in R" and f a function in U(O) for some p ~ 1. Recall 
that the Newtonian potential off is the function w = Nf defined by the convolution. 

(9.26) w(x) = f r(x - y)f(y) dy, 

u 

where r is the fundamental solution of Laplace's equation given by (4.1). The 
following result, which embraces a special case of the Calderon-Zygmund in
equality, is the U analogue of the Holder estimate of Lemma 4.4. 

Theorem 9.9. Let f E U(D), 1 < p < 00, and let w be the Newtonian potential off. 
Then WE W 2,P(O), Aw = f a.e. and 

where C depends only on nand p. Furthermore, when p = 2 we have 

(9.28) flD2Wl2 = f f2 

R" U 



9.4. The Calderon-Zygmund Inequality 231 

Proof. (i) Let us deal first with the case p = 2. Iff E cO'(~n), we have w E CCO(~) 
and, by Lemma 4.3, Aw = f. Consequently, for any ball BR containing the support 
off, 

Applying Green's first identity (2.10) twice, we then obtain 

flD 2Wl2 = f L. (DijW)2 
BR BR 

= f f2 + f Dw· :v Dw. 

BR OBR 

Using (2.14) we have 

uniformly on oBR as R - 00, whence the identity (9.28) follows. To extend (9.28) 
to arbitrary f E L 2(0), we observe first that, by Lemma 7.12, N is a bounded map
ping from LP into itselffor 1 ~ p < 00. The full strength of Theorem 9.9 in the case 
p = 2 then follows by approximation. Indeed, if the sequence {j~} c CO'(D) con
verges to f in L 2(0), the sequence of Newtonian potentials {Nfm} converges to w in 
W 2 • 2(0). 

(ii) For fixed i,j, we now define the linear operator T: L 2(0) - L 2(0) by 

From Lemma 9.7 and (9.28), we have 

(9.29) Jl(t) = JlTf(t) ~ c~1I2r 

for all t > 0 and f E L 2(0). We now show that, in addition, 

(9.30) 
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for all t > 0 and I E L 2(.Q), thereby making possible the application of the Marcin
kiewicz interpolation theorem. To accomplish this we first extend I to vanish out
side Q and fix a cube Ko ~ Q, so that for fixed t > 0 we have 

I I ~ tlKol· 

Ii. 0 

The cube Ko is now decomposed according to the procedure described in Section 
9.2 yielding a sequence of parallel subcubes {K/}/~ 1 such that 

(9.31) t < I~d fill < 2"t 

Ii, 

and 

III ~ t a.e. on G = Ko - U K,. 

The function I is now split into a "good part" 9 defined by 

{

f(X) 

g(x) = _1_ II 
IKd 

Ii, 

for XE G 

for x E K" I = 1,2, ... , 

and a "bad part" b = I-g. Clearly, 

b(x) = 0 for x E G, 

I b = 0 for I = 1, 2, .... 

Ii, 

Since T is linear, TI = Tg + Tb; and, hence, 

J-lTit) ~ J-lTit/2) + J-lTb(t/2). 

(iii) Estimation ~f"Tg: By (9.29) 

4 I 2 J-lTg(t/2) ~? 9 

2"+2 I 
~ -t- Igl 

2n + 2 I ~ -t- III 
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(iv) Estimation of Tb: Writing 

we have 

00 

Tb = L Tbl· 
1=1 

on KI 

elsewhere, 

233 

Let us now fix some I and a sequence {blm } C Cg'(K I) converging to bl in L 2(Q) and 
satisfying 

= o. 

Then for x ¢ K I , we have the formula 

Tblm(x) = f Dijr(x - y)blm(y) dy 

hI 

= f {Dijr(x - y) - DiJ(X - y)}b1m(y) dy, 

h' 

where y = Yl denotes the center of K I • Letting (j = (jl denote the diameter of K l , we 
then obtain (with an estimation similar to that of the integral 16 in the proof of 
Lemma 4.4), 

I Tb1m(x) I < C(n)(j[dist (x, Kl)]-n-l f,b1m(y) I dy. 

hI 

Letting Bl = Biy) denote the concentric ball of radius (j, we obtain by integration 
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Consequently,lettingm-+ oc,writingF* = uB"G* = Ko - F*andsumming 
over I, we get 

G· 

~ C(n) fiJI. 

so that by Lemma 9.7 

i{xEG*IITbl > t12} I ~ Cllfill. 
t 

However, by (9.31), 

and thus (9.30) holds. 

(v) To conclude the proof of Theorem 9.9, we note that (9.29) and (9.30) 
fulfill the hypotheses of the Marcinkiewicz interpolation theorem (Theorem 9.8) 
with q = 1, r = 2. Consequently, 

(9.32) IITflip ~ C(n, p)lIIlIp 

for all 1 < P ~ 2 and J E L 2(Q). The inequality (9.32) is extended to P > 2 by 
duality. For if J, 9 E CO'(Q), then 

f (TJ)g = f wDijg 

n n 

= f f r(x - y)f(y)Dijg(x) dx dy 

nn 
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Thus if p > 2, we have from (9.32), 

IITilip = sup {f(TI)glllgllp, = I} 

Q 

:::; C(n, p')IIIllp, 

so that (9.32) holds for aliI < p < 00. As in the case p = 2, we can then infer the full 
conclusion of Theorem 9.9 by approximation. 0 

Note that T can be defined as a bounded operator on U(Q) even if Q is un
bounded, in which case the conclusion of Theorem 9.9 still holds provided n ~ 3. 
Other approaches to the derivation of inequality (9.27) are discussed in the Notes to 
this chapter. 

The U estimates for solutions of Poisson's equation follow immediately from 
Theorem 9.9. 

Corollary 9.10. Let Q be a domain in IR", u E W~'P(Q), 1 < p < 00. Then 

where C = C(n, p). IIp = 2, 

(9.34) IID2ul12 = IIAuI1 2. 

9.5. LP Estimates 

In this section, we derive interior and global LP estimates for the second derivatives 
of elliptic equations of the forms (9.1) and (9.2). The technique of perturbation from 
the constant coefficient case is similar to that used for the derivation ofthe Schauder 
estimates in Sections 6.1 and 6.2. We first deal with interior estimates; the following 
theorem is analogous to Theorem 6.1. 

Theorem 9.11. Let Q be an open set in IR" and u E Wro/(Q) n U(Q), 1 < p < 00, a 
strong solution oI the equation Lu = f in Q where the coefficients oI L satisfy,for 
positive constants A, A, 

aij E CO(Q), bi, c E L oo(Q), IE U(Q); 

(9.35) aijeie j ~ Alel 2 'Ve E IR"; 

laijl, Ibt Icl :::; A, 

where i,j = 1, ... , n. ThenIor any domain Q' ceQ, 

(9.36) IluI12,p;Q' :::; c(llullp;Q + IIfllp;Q), 
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where e depends on n, p, A, A, Q', Q and the moduli of continuity of the coefficients 
aii on Q'. 

Proof. For a fixed point Xo E Q', we let Lo denote the constant coefficient operator 
given by 

By means of the linear transformation Q used in the proof of Lemma 6.1, we obtain 
from Corollary 9.10, the estimate 

(9.37) 

for any v E W~·P(Q), where e = C(n, p) as in (9.33). Consequently, if v has support 
in a ball BR = BR(xo) ceQ, we have 

and by (9.37) 

IID2Vllp ~ ~ (sup la - a(xo)IIID2vllp + IlaijDijvllp), 
BR 

where a = [di ]. Since a is uniformly continuous on Q', there exists a positive 
number () such that 

la - a(xo) I ~ A/2e 

if Ix - Xo I < (), and hence 

provided R ~ (), where e = C(n, p, A). 
For a E (0, 1), we now introduce a cutoff function Yf E eMBR ) satisfying 0 ~ 

Yf ~ 1, Yf = 1 in BaR, Yf = 0 for Ixl ~ a'R, a' = (1 + a)/2, IDYfI ~ 4/(1 - a)R, 
I D2Yf I ~ 16/( 1 - a)2 R 2. Then, if u E wf;;/(Q) satisfies Lu = f in Q and v = YfU, we 
obtain 

IID2UIIP;BaR ~ ClIYfaijDij II + 2aiiDiYfDjll + uaiiDiiYfllp;BR 

~ e(lIfllp;BR + (1 _la)R IIDullp;Ba'R 

+ (1 - ~)2R2 Ilullp;BR) 

provided R ~ () ~ 1, where e = C(n, p, A, A). 
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Introducing the weighted seminorms 

rpk = sup (1 - olRkIIDkllllp;B.,.R' k = 0, 1,2, 
0<.,<1 

we, therefore, have 

We claim now that rpk satisfy an interpolation inequality 

(9.39) 

for any 8 > 0, where C = C(n). By its in variance under coordinate stretching it 
suffices to prove (9.39) for the case R = 1. 

For y > 0, we fix (1 = (11 so that 

1/>1 ::::; (1 - (11)IIDllll p;B.,. + y 

2 2 C 
::::; 8(1 - (1) liD IIl1 p;B.,. + -; IIlIlIp;B.,. + y 

by Theorem 7.28, so that letting y -+ 0, we obtain (9.39). Using (9.39) in (9.38), we 
then get 

that is, 

(9.40) 

where C = C(n, p, A., A) and 0 < (1 < 1. 
The desired estimate (9.36) follows by taking (1 = t and covering D' with a 

finite number of balls ofradius R/2 for R ::::; min {15, dist (D', aD)}. 0 

In order to extend Theorem 9.11 to the boundary aD, we first consider the case 
of a fiat boundary portion. Letting 

D+ = D n IR~ = {xEDIXn > O}, 

(aD)+ = (aD) n IR~ = {x E aDlxn > O}, 

we have the following extension of Corollary 9.10. 
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Lemma 9.12. Let U E W6' I(Q+), f E U(Q+), 1 < p < 00, saitisfy L1u = f weakly 
in Q+ with u = ° near (0Q)+. Then UE W 2 ,P(Q+) n W6· P(Q+) and 

where C = C(n, p). 

Proof. We extend U and f to all of ~n+ by setting II = f = ° in ~"+ - Q, and then 
to all of ~n by odd reflection, that is, by setting 

for Xn < 0, where x' = (XI' ... , xn_I).1t follows that the extended functions satisfy 
L1u = f weakly in ~n. To show this we take an arbitrary test function q> E CA<~n), 
andfof£ > Oletl1beanevenfunctioninCI(~)suchthatl1(t) = Oforltl ~ e,I1(t) = 1 
for It I ~ 2e and 111'1 ~ 2/e. Then 

- f I1fq> = f Du . D(I1q» 

Now 

If q>I1'Dnul = I f (q>(X', Xn) - q>(X', -Xn»I1'Dnlll 

o <Xn < 2£ 

~ 8 max IDq>1 f IDnll1 

Q<xn<2£ 

--+ ° as e -+ 0. 

Consequently, letting e -+ 0, we obtain 

so that 1I E Wi, I(~n) is a weak solution of L111 = f. 
Since u also has compact support in ~n, the regularization lIh E Co(~n), and 

satisfiesL1uh = fh in ~n. Hence, by Lemma 7.2 and Corollary 9.10, llh -+ II in w2.p(~n) 
as h -+ 0 and, moreover, II satisfies the estimate (9.33). However, then the estimate 
(9.41) follows with constant C twice that in (9.33). Since IIh(X',O) = 0, we also 
obtain II E W6'P(Q+). 0 

For the global estimate, we require that boundary values are taken on in the 
sense of Wi. P(Q). If Tis a subset of oQand II E W1.P(Q), we say that II = Oon Tin the 
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sense of WI.P(Q) if u is the limit in WI.p(Q) of a sequence of functions in CI(Q) 
vanishing near T. For the case p = 2, this coincides with the definition used in 
Section 8.10 and, when u is continuous on T, is implied by u vanishing on T in the 
usual pointwise sense. With the aid of Lemma 9.12 we now derive a local boundary 
estimate. 

Theorem 9.13. Let Q be a domain in IRn with a CI,I boundary portion T c iJQ. Let 
u E W 2 • P(Q), 1 < p < 00, be a strong solution of Lu = fin Q with u = 0 on T, in the 
sense ofWI,P(Q), where L satisfies (9.35) with aij E CO(Q u T). Then,for any domain 
Q' cc Qu T, 

where C depends on n, p, A, A, T, Q', Q and the moduli of continuity of the coefficients 
aij on Q'. 

Proof. Since T E C I • 1, for each point Xo E T there is a neighbourhood .,.tr = ~o 
and a diffeomorphism'; = .; Xo from N onto the unit ball B = B I (0) in IRn such that 
.;(% n Q) c 1R"t, .;(% n iJQ) c olR"t, '" E CI,I(%), ",-I E CI.I(B). As in Lemma 
6.5, writing y = "'(x) = (l/II(X), ... , l/In(x», u(y) = u(x), X E %, y E B, we have 

Lu = iijDiju + 6iDiu + eu = J 
in B+, where 

~ij( ) _ iJl/I i 01/1 j "( ) 
ay-~ ~ ax, 

uX, ux. 

c(y) = c(x), 

6i(y) = iJ2 l/1i ars(x) + Ol/li b'(x), 
iJx, ox. iJx, 

J(y) = f(x) 

so that L satisfies conditions similar to (9.35) with constants.t, A depending on A, A 
and "'.Furthermore,uE W 2 ,P(B+),andu = OonB n iJlR"t in the sense of WI,P(B+). 

We now proceed as in the proof of Theorem 9.11 with the ball BR(xo) replaced 
by the half ball B;(O) c B and with Lemma 9.12 used in place of Corollary 9.10. 
We obtain thus, instead of (9.40), the estimate 

provided R ~ (j ~ 1, where C depends on n, p, A, A and .;; and (j depends on the 
moduli of continuity of aij at Xo and also on .;. Taking (1 = t and .,.t .... = Yxo = 
",-I(Bm ) we therefore have, on returning to our original coordinates. 

where C = C(n, p, A, A, (j, ",). Finally, by covering Q' n T with a finite number of 
such neighbourhoods .R and using also the interior estimate (9.36), we obtain the 
desired estimate (9.42). 0 
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When T = oD in Theorem 9.13 we may take D' = Dtoobtainaglobal W 2 ,P(D) 
estimate. This estimate can, in fact, be refined as follows. 

1beorem 9.14. Let D be a cl. 1 domain in IR" and suppose the operator Lsatisfies the 
conditions (9.35) with aij E CO(Q), i,j = 1, ... , n. Then if II E W 2 ,P(D) n WA,P(D), 
1 < p < 00, we have 

for all (I ~ (10, where C and (10 are positive constants depending only on n, p, ..t, A, D 
and the moduli of continuity of the coefficients aij. 

Proof. We define a domain Do in IR"+ I(X, t) by 

Do = D x (-1, 1) 

together with the operator Lo, given by 

Lov = Lv + Dllv, 

for v E W 2 ,P(Do)' Then, if u E W 2 ,P(Q) n WA,P(D), the function v, given by 

v(X, t) = u(x) cos (l1/2t, 

belongs to W 2 ,P(Do) and vanishes on aD x (-1, 1) in the sense of Wi ' P(Do)' 
Furthermore, 

Lo v = cos (ll/2t(Lu - (lu), 

so that by Theorem 9,13 with D' = D x (-e, e), 0 < e :::;: t, we get 

where C depends on the quantities listed in the statement of the Theorem. But now, 
taking e = n/3(11/2, we have 

so that if (I is sufficiently large 

and hence (9.43) follows from Theorem 9.13. 0 
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Note that when p ~ n, Theorem 9.14 follows directly from Theorems 9.1 and 
9.13. In the Hilbert space approach in Chapter 8, the analogue of Theorem 9.14 is 
Lemma 8.4 and, indeed, it is possible to deduce the case p = 2 from Lemma 8.4. 
We remark also that by invoking the Sobolev imbedding theorem (see, in particular, 
Corollary 7.11) in the proofs of Theorems 9.12, 9.13 and 9.14, we may weaken the 
conditions on the lower order coefficients of L to bi e U(Q), c e U(U), where q > n 
if p ~ n, q = p if p > n, r > nl2 if p ~ n12, r = p if p > n12. 

9.6. The Dirichlet Problem 

The main objective of this section is the following existence and uniqueness theorem 
for the Dirichlet problem for strong solutions. 

Theorem 9.15. Let U be a C1, 1 domain in IRn, and let the operator L be strictly 
elliptic in U with coefficients aij e CO(Q), bi, c e L 00, with i, j = 1, ... , nand c ~ O. 
Then, if f e U(Q) and cp e W 2 • P(Q), with 1 < p < 00, the Dirichlet problem Lu = f 
in U, u - cp e WA' P(U) has a unique solution u e W 2 , P(U). 

Proof. There are various methods for deducing Theorem 9.15 from previous 
existence theorems in Chapters 4,6 and 8. For example, the case p ~ n may be 
derived from either Theorems 6.14 or 8.14 by appropriate approximation (Problem 
9.7), or alternatively from the special case of Poisson's equation by the method of 
continuity (Problem 9.8). Our treatment is based on the case p = 2 already covered 
by Theorems 8.9 and 8.12 under stronger coefficient hypotheses. We shall need the 
following regularity result which in fact is a refinement of Theorems 9.11 and 9.13. 

Lemma 9.16. In addition to the hypotheses of Theorem 9.13, suppose that f e U(U) 
forsomeqe(p, (0). Then,lIe Wlo'cq(u u T),u = Oon TinthesenseofW1,q(U),and 
consequently, u satisfies the estimate (9.42) with p replaced by q. 

Proof. We first treat the interior case when T is empty. Returning to the proof of 
Theorem 9.11, we fix a ball BR = BR(xo) and a cutoff function "I, and set v = "I", 
9 = aiiD··v so that I) , 

Lov = (aii(xo) - aij(x»Diiv + g. 

Since LII = j~ it follows from the Sobolev imbedding theorem that 9 e U(U) where 
llr = max {(llq), (lIp) - (lIn)}. By means of the linear transformation Q, we can 
diagonalize the matrix [aij(xo)] so that the operator Lo becomes the Laplacian, and 
hence 

where V, (ii, g correspond to v, di , g. respectively. By taking the Newtonian potential, 
we then obtain the equation 
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Consequently, the function v satisfies an equation of the form 

(9.45) v = Tv + h, 

where by virtue of the Calderon-Zygmund estimate (Theorem 9.9) T is a bounded 
linear mapping from W 2 , P(BR) into itself for any p E (1, 00), hE L'(BR) and if, as in 
the proof of Theorem 9.11, R ~ (j we must have II TIl ~ 1. Therefore, by the con
traction mapping principle (Theorem 5.1), (9.45) has a unique solution v E W 2 ,P(BR) 

for any p E [1, r]. Hence, 1]11 E W 2 •r(Q), and, since Xo E Q is arbitrary, we obtain 
11 E wfo'cr(Q). If now r = q, we are done. 

Otherwise, the desired interior regularity follows by using the Sobolev imbedding 
theorem and repeating the above argument. The case oflocal boundary regularity is 
handled similarly with Xo E T and the ball BR(xo) replaced by the half-ball B~(O) 
as in the proof of Theorem 9.13. 0 

The uniqueness assertion of Theorem 9.15 follows from Lemma 9.16, for if the 
operator L satisfies the hypotheses of Theorem 9.15 and the functions u, v E W 2 , P(Q) 
satisfyLli = LvinQ,lI- VEW&,P(Q),wehave,byLemma9.16,1I- VEW 2 ·Q(Q)n 
W&,q(Q) for all I < q < 00. Now using the uniqueness result, Theorem 9.5, and the 
Sobolev imbedding (Theorem 7.10), we conclude u = v. From the uniqueness, we 
can derive an apriori bound which extends Corollary 9.14. 

Lemma 9.17. Let the operator L satisfy the hypotheses of Theorem 9.15. Then there 
exists a constant C (independent ofu) such that 

(9.46) 111I112.p;11 ~ CIILlIli p ;11 

for all liE W2.P(Q) n W&·P(Q), 1 < p < lfj. 

Proof. We argue by contradiction. If (9.46) is not true, there must exist a sequence 
{vm} C W2.p(Q) n W&,P(Q) satisfying 

By virtue of the apriori estimate (Theorem 9.13), the compactness of the imbedding 
W&,P(Q) ~ U(Q), and the weak compactness of bounded sets in W 2,P(Q) (Problem 
5,5), there exists a subsequence, which we relabel as {vm}, converging weakly to a 
function VE W2,P(Q) n W&'P(Q) satisfying Ilvll p;11 = 1. Since 

for allial ~ 2 and g E U/(p-l)(Q), we must have 

f gLv = 0 

11 
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for all g E U/(P- I )(Q); hence Lv = 0 and v = 0 by the uniqueness assertion, which 
contradicts the condition Ilvllp = I. 0 

We are now in a position to prove Theorem 9.15. First we observe that if the 
principal coefficients aij E eO.I(Q) and p ? 2, the result follows directly from 
Theorems 8.9 and 8.12, and Lemma 9.16. In the general case, we replace u by u - cP, 
to reduce to zero boundary values, and approximate the coefficients aii uniformly 
by a sequence {a~} c eo.I(Q) with, in the case p < 2, the function I being ap
proximated in U(Q) by a sequence Um} c L2(Q). If {um} denotes the sequence of 
solutions of the corresponding Dirichlet problems, we infer from Lemma 9.17 that 
the sequence {um} is bounded in W 2, P(Q). Consequently, by Problem 5.5 again, a 
subsequence converges weakly in W 2 ,P(Q) n W~'P(Q) to a function u that (by an 
argument similar to that in Lemma 9.17) satisfies Lu = I in Q. 0 

Theorem 9.15 may also be derived from a Fredholm alternative, which follows 
from Corollary 9.14; (Problem 9.9). When p > n/2, we obtain an existence theorem 
for continuous boundary values. 

Corollary 9.18. Let Q be a el. I domain in IRft, and let the operator L be strictly 
elliptic ill Q with coefficients aii E eO(n), bi, c E L 00, i,j = 1, ... , nand c ~ O. Then, 
if I E U(Q), p > n/2, cP E eo(aQ), the Dirichlet problem LII = I in Q, 11 = cP on an, 
has a unique solution 1/ E W~o'/(Q) n eO(n). 

Proof. The uniqueness assertion follows from Theorem 9.5 and Lemma 9.16; (in 
fact, it is clearly valid for arbitrary Q and p > 1). To get the existence, we let 
{CPm} C W Z• P(Q) converge uniformly to cP on aQ, and let Um E W Z • P(Q) be the solu
tion of the Dirichlet problem LUm = I in Q, Urn = CPm on aQ, known to exist by 
Theorem 9.15. The differences, U, - Um , clearly satisfy 

Hence by Theorems 9.1 and 9.11,and Lemma 9.16, we obtain that {um} converges in 
e°(Q) n W~.;/(Q) to a solution of the Dirichlet problem, Lu = I in Q, II = cP on 
cQ. 0 

By invoking barrier considerations similar to those in Chapter 6, we may extend 
Corollary 9.18 to allow for more general domains Q. We consider this type of result 
in Section 9.7 in conjunction with continuity estimates at the boundary. 

To conclude this section we state a theorem concerning higher-order regularity 
that improves Theorems 6.17 and 6.19 for classical solutions. The proof may be 
effected by using difference quotients as in these theorems, or by an argument similar 
to that of Lemma 9.16. The details are left to the reader; (Problem 9.10). 

Theorem 9.19. Let 1/ be a W~o/(Q) solution of the elliptic equation Lu = I in a 
domain Q, where the coefficients ojL belong to Ck- 1. I(Q), (Ck-I'~(Q»,f E W}~';(Q), 
(Ck- I "(Q»,withl < p,q < oo,k? 1,0 < (J. < I.ThenuEW}o:z,q(Q),(ek +1. 2 (Q». 
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Furthermore, if DE CH I, I, (Ck + 1,2), L is strictly elliptic in D with coefficients 
in Ck-I,I(Q), (Ck-I,tI(Q», and jEWk,q(D), (Ck-I,tI(Q», then UEWk+2,q(D), 
(Ck+ l,tI(Q». 

9.7. A Local Maximum Principle 

In this and the following sections, we focus attention on local pointwise estimates 
for operators in the general form (9.1) and derive results corresponding to those for 
divergence structure operators in Sections 8.6 through 8.10. We shall assume 
throughout the rest of this chapter that the operator L, as given by (9.1), is strictly 
elliptic with bounded coefficients in the domain D, and accordingly, we fix con
stants y and v such that 

(9.47) 
A 
I~ y, 

in D. We prove in this section the following analogue of the subsolution estimate, 
Theorem 8.17. 

Theorem 9.20. Let II E W 2, "(Q) and sllppose LII ~ j, where j E L"(D). ThenJor any 
ball B = B2R(y) C D and p > 0, we have 

where C = C(n, y, vR 2 , p). 

Proof. Without loss of generality, we can assume that B = BI(O), the general case 
being recovered by means of the coordinate transformation x ~ (x - y)/2R. We 
also assume initially that II E C2(D) r. W2 ·"(D). For fJ ~ 1, a cutoff function" is 
defined by 

By differentiation, we obtain 

Dj " = -2fJxll - JXJ2)/I- 1, 
Dij" = -2fJtJjJ{1 - JXJ2)11-1 + 4fJ(fJ - l)XjXil -JXJ2)/I- 2. 

Setting v = ,,11, we then have 
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Letting r+ = r: denote the upper contact set of v in the ball B, we clearly have 
u > 0 on r+ ; and furthermore, using the concavity of von r+, we can estimate 
there 

1 
I Dul = - I Dv - uD'11 

'1 

1 
~ - (IDvl + uID'1i) 

'1 

~ ~ (1 : Ixl + IIID'1I) 

~ 2(1 + P)'1- l/fJlI . 

Thus, on r+ we have the inequality 

-aiiDijv ~ {(l6p2 + 2'1P)A'1- 2IfJ + 2Plbl'1- 1/fl + c}v + '1f 

~ Ch7- 2Iflv + I, 

where C = C(n, p, y, v). Therefore, applying Lemma 9.3, we obtain for P ~ 2, 

s~p v ~ C(II'1- 2/flv+ II .. ;B + ~ II fII,,; B) 

~ C{(SUP V+)1-2 /fl ll(u+)2/flll,,;B + ~ IIflld}' 

Choosing P = 2n/p (provided p ~ n) and using Young's inequality (7.6) in the form 

for e > 0, we then get 

and the estimate (9.48) follows. The extension to 11 E W 2.,,(.Q) follows directly by 
approximation and is left to the reader. 0 

By replacement of 11 with - 11, Theorem 9.20 extends automatically to super
solutions and solutions of the equation Lu = f. 
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Corollary 9.21. Let u E W 2, n(Q) and suppose Lu :::; f, ( = f), where f E U(Q). Then, 
jor any ball B = B 2R(y) C Q and p > 0, we have 

where C = C(n, y, vR2, p). 

Note that when we take p = 1 in (9.48), we obtain an extension ofthe mean value 
inequality for non-negative subharmonic functions, namely, 

(9,51) u(y) :::; ~n f U 

BR(Y) 

provided LII, u ~ 0 in BR(y) and C = C(n, y, vR2), Theorem 9,20 also continues to 
hold under more general coefficient conditions; (see Notes), 

9.8. Holder and Harnack Estimates 

We present in this section a treatment of the Holder and Harnack estimates, of 
Krylov and Safonov [KS 1,2], that are the analogues for uniformly elliptic 
operators in the general form of the De Giorgi, Nash and Moser estimates for 
divergence form operators. Also important for our treatment of fully nonlinear 
elliptic operators in Chapter 17 is the weak Harnack inequality for non-negative 
supersolutions from which the Holder and Harnack estimates are readily derived. 

Theorem 9.22. Let u E w2.n(Q) satisfy Lu :::; fin Q, where f E L n(Q), and suppose 
that u is non-negative in a ball B = B 2R(y) C Q. Then 

where p and C are positive constants depending only on n, y and VR2. 

Proof. Again let us assume initially that B = B1(0) and also that A. == 1, (by re
placing L, f by L/ A., f / A.). Setting 

(9.53) 
u = u + f. + Ilflln;B' 
w = -log u, v = IJW, g = flu, 
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where f: > 0, and rJ is given by (9.49), we then obtain, using Schwarz's inequality, 

-aiiD··v = - .. diD··w - 2aiiD·"D·w - waiiD.· .. 'J ., 'J ,., J ')" 

Next we calculate 

in particular if 

~ rJ( -aiiDiwDiw + biDiW + lei + g) 
- 2aiiD·"D·w - wdiD·· .. ,., J ')" 

Consequently if 0 < lX < 1 and P is chosen so that 

ny 
P >-

:;..- 2lX 

we have aiiDijrJ ~ 0 for alllxl ~ lX. Hence we obtain, on B+ = {x E Blw(x) > O}, 
the inequality 

Therefore, applying Lemma 9.3, and noting that Ilglln;B ~ 1, we get a bound for v, 
namely, 

(9.54) sup v ~ C(l + Ilv+ Iln;BJ, 
B 

where C = C(n, lX, y, v). 
To facilitate eventual application of the cube decomposition procedure in 

Section 9.2 it is convenient at this point to switch from balls to cubes. For any point 
Y E IRn and R > 0 we shall denote by K R(Y) the open cube, parallel to the coordinate 
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1 
axes, with center y and side length 2R. If ex < r:. we have K~ = K,(O) c c Band 
hence from (9.54), v n 

sup v:::; C(l + Ilv+lln;kJ 
B 

:::; C(1 + IK: 11/n sup v+), 
B 

where K: = {x E K,I v > O}. Hence, if 

then 

sup v:::; 2C, 
B 

where C = C(n, IX, y, v) is the constant in (9.54). Let us now choose IX = 1/3n and 
fix () accordingly. Using the transformation x -+ IX(X - z)/r, we therefore obtain for 
any cube K = K,(z), such that B 3n,(Z) C Band 

the estimate 

(9.56) sup w :::; C(n, y, v). 
k3.(Z) 

The proof of Theorem 9.22 is now completed with the aid of the following 
measure theoretic lemma. 

Lemma 9.23. Let Ko be a cube in IRn, WE L I(Ko); and,for k E IR, set 

rk = {x E Kolw(x) :::; k}. 

Suppose there exist positive constants {) < 1 and C such that 

(9.57) sup (w - k) :::; C, 
ko"k3.(Z) 

whenever k and K = K,(z) c Ko satisfy 

(9.58) Irk n KI ~ (iIKI· 

Then it follows that Jar all k, 
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Proof. We first show by induction that 

sup (w - k) ::;; mC, 
1\.0 

for any natural number m and k E ~ satisfying Irk I ~ {)m I K 0 I. This assertion is 
clearly true by hypothesis for m = 1. Suppose now it holds for some mEN, and 
that irkl ~ {)m+ 11 Ko I. Let fk be defined by 

By our cube decomposition procedure in Section 9.2, in particular inequality 
(9.20) with t = (), we obtain that either fk = Ko or that 

_ 1 

Irkl ~ 'J Irkl 

~ {)mlKol 

and hence, replacing k by k + C, we obtain 

sup (w - k) ::;; (m + I)C, 
1\.0 

which guarantees the validity of the above assertion for m + 1. The estimate (9.59) 
now follows by the appropriate choice of m. 0 

To apply Lemma 9.23, we take () = 1 - lJ, Ko = KII(O), (X = 1/3n and note that 
the estimate (9.56) still holds when w is replaced by w - k. Let 

Il, = I{XEKolu(x) > t}1 

denote the distribution function of u in Ko to obtain from (9.53) and (9.59) with 
t = e- k, the estimate 

(9.60) Il, ::;; C(inf u/t)\ t > 0, 
1\.0 

where C and K are positive constants depending only on n, y and v. Replacing the 
cube Ko by the inscribed ball B,,(O), (X = 1/3n and using Lemma 9.7, we then obtain 

(9.61) S(iW::;; C(infiW, 
Bm 

for p < K, say p = K/2. The weak Harnack inequality in the form (9.52) then follows 
by letting f: -+ 0, using a covering argument to extend (9.61) to arbitrary (X < I, (in 
particular (X = t), and finally invoking the coordinate transformation x-+ 
(x - y)/2R. 0 
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By adapting the proof of the Holder estimate for divergence structure operators 
(Theorem 8.22), (with only a minor modification to offset not having p = 1 in the 
weak Harnack inequality (9.52», we conclude from Theorem 9.n the following 
Holder estimate for operators in general form. 

CoroUary 9.24. Let II E W 2, n(D) satisfy the eqllation Lu = fin D. Then,for any ball 
Bo = BRo(Y) C 0 and R ~ Ro, we have 

(9.62) osc U ~ C(: )<Z(OSC Ii + KRo), 
BR(Y) ° Bo 

where C = C(n, y, vR~), ex = ex(n, y, vR~) are positive constants and K = Ilf - CUlln;Bo' 

Also by combining Theorem 9.22 with the subsolution estimate (Theorem 9.20), 
we obtain the full Harnack inequality. 

Corollary 9.25. Let U E W 2'"(D) satisfy Lu = 0, II ~ 0 in D. Then for any ball 
B 2R(y) C 0, we have 

(9.63) sup u ~ C inf II, 
BR(Y) BR(Y) 

where C = C(n, y, VR2). 

9.9. Local Estimates at the Boundary 

The local maximum principle (Theorem 9.20) may be extended to balls inter
secting the boundary aD as follows. 

Theorem 9.26. Let u E W 2 '"(D) n C°(Q) satisfy Lu ~ fin 0, u ~ 0 on B n aD 
where f E L "(D) and B = B2R(y) is a ball in ~n. Then,for any p > 0, we have 

(9.64) sup II ~ ci(I~1 f (U+y)I/P + ~ IIfIILn(BI"lu)}' 
QI"lBR(Y) , 

BI"lQ 

where C = C(n, y, vR 2 , p). 

Proof. It suffices to establish the estimate (9.64) for u E C2(D) n C°(Q) satisfying 
u ~ 0 on B noD. We extend u to the whole ofthe ball B by setting u = 0 in B - D. 
Although U then does not necessarily belong to C2(B), the argument of Theorem 
9.20 may still be applied since r+, the upper contact set of the function v, will lie 
in B n 0, and v E C 2 (T+) is sufficient for the application of Lemma 9.3. 0 

It is worth recording here the general observation, used in the proof of Theorem 
9.26, that if u fulfills the hypotheses of Lemma 9.3, the estimate (9.11) continues to 



9.9. Local Estimates at the Boundary 251 

hold when r+ is replaced by the upper contact set of u with respect to any larger 
domain D, (to which u is extended by setting u = 0 in D - D), and with d = diam D. 

The weak Harnack inequality (Theorem 9.22) admits the following extension to 
the boundary. 

Theorem 9.27. Let u E W 2.n(D) satisfy Lu ~ fin 0, u ~ 0 in B n 0, where B = 
B2R(y) is a ball in ~n. Set m = inf u and 

B"iJU 

u-(x) = {inf {u(x), m} 
m m 

Then 

for XEB n 0 
for XEB - D. 

where pand Care positive constants depending only on n, yand VR2. Ifweassumeonly 
u E w~~n(D), then (9.65) holds with m = lim inf u. 

%""B iJU 

Proof. We adapt the proof of Theorem 9.22 by replacing u with u;;;. The estimate 
(9.56) then follows when the function w is replaced by w - k for k ~ -log m, and 
we thus infer the estimate (9.60) for 0 < t ~ m. But III = 0, if t > m, hence (9.65) 
follows as before. The final assertion of Theorem 9.27 is a consequence of the 
remark following Theorem 9.1. 0 

Global and boundary modulus of continuity estimates follow as consequences 
of Theorem 9.27. Corresponding to the divergence structure results (Theorems 8.27 
and 8.29), we obtain the following estimates. 

Corollary 9.28. Let u E wl;;.,n(D) satisfy Lu = fin 0 where f E L n(D), and suppose 
that 0 satisfies an exterior cone condition at a point y E aD. Then,for anyO < R < Ro 
and ball Bo = BRo(y), we have 

(9.66) osc 11 ~ C{(: )"( osc 11 + kRo) + aJRRo}, 
U"BR 0 U"Bo 

where C = C(n, y, vR~, Y,), ex = ex(n, y, vR~, Y,) are positive constants, Vy is the 
exterior cone at y and 

a(r) = osc II = lim sup II - lim inf u 
I!U"Br 

for 0 < r ~ Ro. 
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Corollary 9.29. Let u E W 2 ."(.Q) n CO(Q) satish Lu = I in Q, u = <p on JQ where 
IE L "(Q), <p E CP(Q)Ior some /3 > 0, and suppose that JQ satisfies a uniform exterior 
cone condition. Then u E C"(Q) and 

(9.67) 

where IX and C are positive constants depending on n, y, v, /3, Q, 1<p1~;u and lulo;u. 

We note here that modulus of continuity estimates at the boundary also arise 
from barrier constructions as in Section 6.3. However, Theorem 9.28 may be used in 
place of barrier arguments to solve the Dirichlet problem by means of the Perron 
process. To see this, let us suppose that the operator L satisfies the hypotheses of 
Theorem 6.11; and let u E C2(Q) be the Perron solution of the Dirichlet problem, 
Lu = I, u = <p on JQ, whose existence is asserted by Theorem 6.11. Corollary 9.28 
then provides an estimate for the modulus of continuity of u at a point y E JQ, where 
Q satisfies an exterior cone condition, in terms of the modulus of continuity of the 
function <p at y. If Q satisfies an exterior cone condition everywhere on JQ, we then 
conclude u E C°(Q) and u = <p on JQ thus solving the above Dirichlet problem. 

Consequently, in the existence theorem (Theorem 6.l3), we may replace the 
exterior sphere condition by an exterior cone condition that would be satisfied, for 
example, by Lipschitz domains; (see also Problem 6.3). Utilizing our results in 
Section 9.5, in particular Corollary 9.l8, we may further extend Theorem 6.l3 to 
cover continuous coefficients. 

Theorem 9.30. Let L be strictly elliptic in a bounded domain Q with coefficients 
dj E CO(Q) n L ""(Q), bi, c E L ""(.Q) and c ~ 0, and suppose that Q satisfies an exterior 
cone condition at every boundary point. Then if I E U(Q),p ~ n,the Dirichlet problem, 
Lu = I in Q, u = <p on JQ, has a unique solution u E wfo~t(Q) n CO(Q). 

Proof. To complete the proof of Theorem 9.30, it suffices, in view of the remarks 
preceding the theorem, to establish the existence of an analogue in wf.;/(Q) of a 
Perron solution under the hypotheses of the theorem. Again, we may imitate the 
Perron method for subharmonic functions in Chapter 2 making crucial use of the 
strong maximum principle (Theorem 9.6), the solvability of the Dirichlet problem in 
balls with continuous boundary data (Corollary 9.l8), and the interior estimates 
(Theorem 9.l1) coupled with the weak relative compactness of bounded sets in 
W 2 • P(Q'), Q' ceQ. The details are left to the reader. 0 

Boundary HOlder Estimates for the Gradient 

An interesting and useful Holder estimate for the traces of the gradients of solu
tions on the boundary may also be deduced from the interior Harnack (or weak 
Harnack) inequalities. This result was established by Krylov [KV 5] in connection 
with its application to the theory of fully nonlinear equations, which we describe 
in Section 17.8. For these purposes it suffices to restrict to a flat boundary portion 
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where the solution is assumed to vanish and to consider operators of the form 

Lu = aij Dij U 

satisfying the uniform ellipticity condition (9.47). More general results are readily 
formulated. 

Theorem 9.31. Let U E w;~~n(B+) n C°(iJ+) satisfy the equation Lu = f in the 
half ball B+ = BRo(O) n R."t- with f E LOO(B+) and u = 0 on T = BRo n oR"t-. Then 
for any R ~ Ro, we have 

(9.68) u (R )'" (u If I) o~c - ~ C -R o~c - + Ro sup 1 
B. Xn ° B Xn B II. 

where (J. and C are positive constants depending only on nand y. 

Proof We proceed under the assumption that the function v = u/xn is bounded 
in B+; (local boundedness at least is guaranteed by the barrier considerations in 
Section 6.3). Assuming initially that u ~ 0 in B +, we first prove the following 
assertion: There exists fJ = fJ (n, y) > 0 such that 

(9.69) inf v ~ 2 (inf v + ~ sup If I) 
Ix'i < R, BRI2.b A. B+ 
x.=bR 

for any R ~ Ro, where 

To prove (9.69) it is convenient to normalize so that). = R = 1 and inf v(x', fJR)=1. 
We consider in BI,b the barrier function Ix'i < R 

w(x) = (1 -lx'12 + (1 +suplfl) (X~fJ») x n • 

By straightforward computation, we obtain Lw ~ f for sufficiently small 
fJ = fJ(n, y) and w ~ u on oBI,b, so by the maximum principle, Theorem 9.1, we 
have w ~ u in Bu. Thus on BI /2,b, 

(x - fJ) 1 
v~1-lx'12+(1+suplfl) :.a ~2-suplfl, 

again for sufficiently small fJ. Removal of the normalization yields (9.69) as re
quired. We now define 

Bk/2,b = {xllx'i < R, fJR/2 < Xn < 3fJR/2}, 

noting that 



254 9. Strong Solutions 

in Bl/2.~' Consequently by the Harnack inequality, Corollary 9.25, we obtain 

(9.70) sup v ~ C( inf v + R sup If/Jel) 
BR12.6 BR12.6 

~ C( inf v + R sup If/AI) 
Ix'i <R. 
x.=~R 

~C(inf v+Rsuplf/AI), 
BR!2 •• 

by (9.69). 

We now drop the assumption u ~ 0 and set M = inf v, m = inf v. Applying (9.70) 
B 2R.• B 2R •• 

to the functions M - v, v - m and adding the resulting inequalities, we get the 
standard oscillation estimate 

osc v ~ U (osc v + C R sup If/;, I) 
BR,2.. Ba .• 

where C > 0 and u < 1 depend only on nand y f rom this (9.68) follows by virtue 
of Lemma 8.23. 0 

Theorem 9.31 shows in fact that the gradient Du exists on T and is Holder 
continuous there, satisfying the estimate 

(9.71) osc Du(x', 0) ~ C (RR)" (osc ~- + ~ sup If I) 
Ix'I<R ° B+ Xn I\, B+ 

Moreover the term osc ~ on the right hand side of (9.68) or (9.71) can be replaced 
B+ Xn 

by either osc u/ Ro or sup I Du I. Global C I ,2 estimates can be deduced from Theo-
B+ B+ 

rem 9.31 on combination with appropriate interior estimates which typically hold 
for nonlinear equations; (see Problem 13.1 and Section 17.8). 

Notes 

The maximum and uniqueness principles for strong solutions, as formulated in 
Theorems 9.1, 9.5 and 9.6, are due to Aleksandrov [AL 2], [AL 3], although the 
essential case covered by Lemma 9.3 appears in Bakelman [BA 3). A detailed 
analysis ofthe form ofthe constant C in the estimate (9.4) is carried out in the papers 
[AL 4, 5]. In all these results it is impossible to replace the Ln norms by U norms 
for p < n [AL 6). Indeed the example (8.22) shows that the uniqueness result 
(Theorem 9.5) no longer holds if we only assume the functions II, /' E W~":(Q) n 
C°(.O), p < n. Different versions of the maximum principle (Theorem 9.1) were 
discovered by Bony [BY] and Pucci [PU 3]. 

The Calderon-Zygmund inequality was discovered by Calderon and Zygmund 
[CZ], and we have largely followed their original proof, as expounded by Stein 
[SN], making use of the cube decomposition procedure (which extends the one 
dimensional case due to Riesz [RZ]) and the Marcinkiewicz interpolation theorem 
[MZ). Our proof differs from those in [CZ] and [SN] in that we do not use the 
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Fourier transform to get the L 2 estimate. The operator T in the proof of Theorem 
9.9 is a special case of a singular integral operator, and it was this class of operators 
that was the main object of study in [CZ] and [SN]. An alternative proof of the 
Calderon-Zygmund inequality is presented in the monographs [BS], [MY 5]. A 
further proof, also based on interpolation, uses the space of functions of bounded 
mean oscillation, BMO; see [CS], [FS]. 

The U estimates for second-order elliptic equations, presented in Section 9.4, 
were derived by Koselev [KO] and Greco [GC] and extended to higher-order 
equations and systems by various authors, including Slobodeckii [SL] Browder 
[BW 3] and'Agmon, Douglis and Nirenberg [ADN 1,2]. The existence theorem 
(Theorem 9.15) appears in Chicco [CI 4, 5], although derived differently there; and 
a further approach to the Dirichlet problem is given by P. L. Lions [LP 1]. The 
regularity argument in Lemma 9.16 is taken from Morrey [MY 5], where the U 
theory is also treated. 

The pointwise estimates of Sections 9.6, 9.7 and 9.8 stem from the fundamental 
work of Krylov and Safonov, (see [KS 1,2], [SF]) where the Holder and Harnack 
estimates of Corollaries 9.24, 9.25 are established, for c ~ O. In fact, the more 
general situation of parabolic equations is treated in [KS 1,2]. Our presentation in 
Section 9.7, adapted from [TR 12], carries over their basic ideas. The local maximum 
principle (Theorem 9.20) was also proved in [TR 12], under more general coefficient 
conditions, namely A/~*, b/~* E U(O), q > n, c/!!)*, f /!!)* E U(O). The estimates 
of Section 9.7 may similarly be extended to allow b/ A E L 2"(0), c/ A, fI A E L "(0), 
although the condition of uniform ellipticity seems essential for the proofs in this 
case. Extensions to quasilinear equations are treated in [TR 12], [LV 7] and [MV 1]; 
(see also Chapter 15). 

We have also included in the present edition a proof of the boundary HOlder 
gradient estimate of Krylov [KV 5], utilizing a simplification of Caffarelli. Krylov's 
original proof was presented in the form of a problem in the English second 
edition. 

Problems 

9.1. Prove that in the estimates (9.8) and (9.1 J) we can replace d by d/2 and also 
by considering a spherical cone show that the resulting estimates are sharp; (see 
[AL4,5]). 

9.2. By explicitly integrating the function g and optimizing the choice of J1 in the 
proof ofTheorem 9.1, ded uce an improvement ofthe estimate (9.14); (see [AL 4, 5]). 

9.3. Derive the estimate (9.11) in the form 

(9.68) \\
aii D .. U\\ sup u ~ sup u+ + C(n) lal l/" ~;J , 

U au L"(r+) 

where Q denotes the convex hull of 0; (see [T A 5] for a sharp version of (9.68) when 
n = 2). 
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9.4. Prove the following more general version of the Marcinkiewicz interpolation 
theorem: 

Theore ... 9.31. Let T be a linear mapping from U(Q) n Lr(Q) into U(Q) n Lr(Q), 
1 ~ q < r < 00, 1 ~ ii ~ , < 00, and SliPpOse there are constants Tl and T2 sllch 
that 

(9.69) 

for all f E U(Q) n L'(Q) and t > O. Then T extends as a bounded mapping from 
U(Q) to U(Q)for any p, p satisfying 

l/p = a/q + (1 - a)/r, l/p = a/ii + (1 - a)/, 

for some a E (0, 1). 

Examine also the case when r or, = 00. 

9.5. With the notation of Section 7.8, use the general Marcinkiewicz interpolation 
theorem to show that the potential operator VI' maps U(Q) continuously into 
U(Q) for p > 1 andb = Ii. 

9.6. Using Lemma 9.12, show that for a e1.1 domain Q the subspace 

{li E e 2(m11l = 0 on aQ} 

is dense in W2,P(Q) n W&,P(Q), 1 < p < 00. 

9.7. Deduce Theorem 9.15 directly by approximation based on either Theorems 
6.14 or 8.14. 

9.8. Deduce Theorem 9.15 for the special case of Poisson's equation from the Riesz 
representation theorem, and use the method of continuity (Theorem 5,2) to get the 
full result. 

9.9. Starting from Corollary 9.14, establish a Fredholm alternative for operators 
of the form (9.1) in the Sobolev spaces W2 • P(Q), 1 < P < 00; and again deduce 
Theorem 9.15. 

9.10. Prove Theorem 9.19. 

9.11. Suppose the operator L satisfies the hypotheses of Theorem 9.22 in an 
annular region, A = BR(y) - BiY) c IR". If u E W 2'''(A) satisfies Lu ~ f, 1I ~ 0 in 
A, where f E L "(A), prove that for any p < r < R 

(9.70) inf u ~ K(infu - R IIf11n;A), 
B,-B. aBo 
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where K is a positive constant depending only on n, p/R, rlR, y and vR2. Use this 
result to deduce Theorem 9.22 from Theorem 9.20. 

Problem 9.12. By considering the operator 

x·x· 
Lu=ALlu+(l-A) I~Fi'DijU 

and the function 

u(x)=lxI1 -(n-llY , y=A/l 

suitably redefined near 0, show that the exponent p in the weak Harnack inequal
ity Theorem 9.22 must satisfy 

n 
p< . 

(n-1)y-1 



Part II 

Quasilinear Equations 



Chapter 10 

Maximum and Comparison Principles 

The purpose of this chapter is to provide various maximum and comparison 
principles for quasi linear equations which extend corresponding results In 

Chapter 3. We consider second order, quasilinear operators Q of the form 

where x=(xl' ... , x") is contained in a domain Q of !R", n;::2, and, unless other
wise stated, the function u belongs to C 2(Q). The coefficients of Q, namely the 
functions aij(x, z, p), i, j= I, ... , n, b(x, z, p) are assumed to be defined for all 
values of (x, z, p) in the set Q x !R x !R". Two operators of the form (10.1) will be 
called equivalent if one is a multiple of the other by a fixed positive function in 
Q x !R x !R". Equations Qu=O corresponding to equivalent operators Q will also 
be called equivalent. 

We adopt the following definitions: 

Let JiI be a subset of Q x !R x !R". Then Q is elliptic in JiI if the coefficient matrix 
[aij(x, z, pl] is positive for all (x, z, p) E OU. If A.(x, z, p), A(x, z, p) denote respec
tively the minimum and maximum eigenvalues of [aij(x, z, pl], this means that 

for all ~=(~I, ... ,~")E!R"-{O} and for all (X,Z,p)EJiI. If, further, Aj). is 
bounded in JiI, we shall call Q uniformly elliptic in JiI. If Q is elliptic (uniformly 
elliptic) in the whole set Q x !R x !Rn, then we shall simply say that Q is elliptic 
(uniformly elliptic) in Q. If u E C 1(Q) and the matrix [aij(x, u(x), Du(x))] is positive 
for all x E Q, we shall say that Q is elliptic with respect to u. We also define a scalar 
function ~, which will prove to be quite important, by 

(10.3) I(x, z, p)=aij(x, z, P)PiPj. 

If Q is elliptic in OU, we have by (10.2) 

(10.4) O<A.(x, Z, p)lpl2 ~~(x, z, p)~A(x, Z, p)lpl2 

for all (x, z, p) E 0/1. 
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so that Q is elliptic for all a ~ 1 and uniformly elliptic only if a> 1. Writing 

we see that Q is equivalent to a divergence form operator, and moreover that Q is 
equivalent to the variational operator associated with the integral 

f (l + IDuI 2)'z/2 dx. 
U 

The equation Qu=O coincides with Laplace's equation when a=2, and with the 
minimal surface equation when a = 1. For other values of a, this equation arises in 
the cracking of plates and the modelling of blast furnaces. 

(ii) Qu=tJu+PDjuDpDjp, p~O. 

Here 

A.(x, z, p) = 1 

A(x, Z, p)= 1 + Plpl2 

Sex, z,p)=lpI2(l+PlpI2) 

so that Q is elliptic for all p~o and uniformly elliptic only when P=O (that is 
when Q is the Laplacian). For P>O, Q is equivalent to the variational operator 
associated with the integral 

Note that when P~ 1, the minimum and maximum eigenvalues of Q are propor
tional to those in the case a = 1 in the previous example. However, the existence 
results for these operators will tum out to differ substantially due to the different 
growth properties of their S functions. 

(iii) The Equation of Prescribed Mean Curvature 

Let u E C 2(0) and suppose the graph ofu in !Rn + 1 has mean curvature H(x) at the 
point (x, u(x», xED. (The mean curvature is understood with respect to the 
normal direction along which xn+ 1 is increasing). It follows (see Appendix to 
Chapter 14) that u satisfies the equation 

(10.7) 9Jlu=(1 +IDuI 2)tJu-DjuDpDiP=nH(l +IDuI 2)3/2. 

Here 

A.(x, z,p)= 1, 

A(x, z, p)= 1 + Ip12, 



262 10. Maximum and Comparison Principles 

and 

The operator IDl in (10.7) is equivalent to the operator Q in example (i) when a = 1. 

(iv) The Equation of Gas Dynamics 

The stationary irrotational flow of an ideal compressible fluid is described by the 
equation of continuity, div (pDu) = 0, where u is the velocity potential of the flow 
and the fluid density p satisfies a density-speed relation p = p(IDul}. In the case of 
a perfect gas this relation takes the form 

( 
y 1 )1/(Y-1' 

p= 1- ~ IDul 2 , 

where the constant y is the ratio of specific heats of the gas and y> I. The equation 
satisfied by the velocity potential u is then 

(to.8) 

which has the eigenvalues 

l-y+IIDuI 2 

A= 2 A=l. 
l_ y- 1 IDuI 2 ' 

2 

Equation (to.8) is elliptic-and the flow is subsonic-when IDul < [2/(y + 1>]1/2, 
but is hyperbolic when [2/(y + 1)]1/2 < IDul < [2/(y - 1)]1/2. We note that (to.8) 
becomes the minimal surface equation when y = - 1. 

(v) The Equation o/Capillarity 
The equilibrium shape of a liquid surface with constant surface tension in a uniform 
gravity field is governed by the equation of capillarity, 

(10.9) d. ( Du ) IV = /cu, Jl + IDul 2 

or equivalently, 

where IDl is the operator defined in (10.7), u is the height of the liquid above an 
undisturbed reference surface, and /C is a constant that is positive or negative 
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according to whether the gravitational field is acting downward or upward. In the 
absence of gravity, the equation is replaced by the constant mean curvature equa
tion, with H equal to a constant in (10.7). The function t! and the eigenvalues A, A 
are the same as for (10.7). The natural physical boundary condition for the height 
u in (10.9), when the fluid is constrained by a fixed rigid boundary, is 

iJujav 
---,.===~ = cos y, Jl + IDul 2 

where the contact angle y is the angle between the liquid surface and the fixed 
boundary, measured within the fluid; v is the corresponding normal to the fixed 
boundary. 

10.1. The Comparison Principle 

If L is a linear operator satisfying the hypotheses of the weak maximum principle, 
Corollary 3.2, and if u, v E CD(D) n C 2(Q) satisfy the inequalities LLL~ Lv in 
Q, u~v on aQ, we have immediately from Corollary 3.2 that U~L' in Q. This 
comparison principle has the following extension to quasilinear operators. 

Theorem 10.1. Let u, v E Com) n C2(Q) satisfy Qu ~ Qv in Q, u ~ von aQ, where 

(i) the operator Q is locally uniformly elliptic with respect to either u or v; 
(ii) the coefficients d i are independent of z; 

(iii) the coefficient b is non-increasing in z for each (x, p) E Q x ~n; 
(iv) the coefficients aii, b are continuously differentiable with re"pect to the p 

variables in Q x ~ x ~n. 

It then follows that u~ v in Q. Furthermore, if Qu> Qv in Q, u~ v on iJQ and 
conditions (i), (ii) and (iii) hold, (but not necessarily (iv», we have the strict inequality 
u<v in Q. 

Proof Let us assume that Q is elliptic with respect to u. Then we have 

Qu- Qv=aii(x, Du)Dij(u-v)+ (di(x, Du)-di(x, Dv»Dijv 
+b(x, u, Du)-b(x, u, Dv)+b(x, u, Dv)-b(x, v, Dv)~O 

so that by writing 

we see that 

w=u-/) 

aij(x)=aij(x, Du) 

[aii(x, Du)-aii(x, Dv)]Dijv+b(x, u, Du)-b(x, U, Dv)=bi(x)Diw 
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on Q+ = {x E Q I w(x»O} and w~O on iJQ. Note that the existence of the locally 
bounded functions bi is guaranteed by condition (iv) and the theorem of the mean. 
Consequently, using conditio'ls (i) and (iv) we have from Theorem 3.1 that 
w ~ 0 in Q. If Qu > Qv in Q, the function w cannot assume a non-negative maximum 
in Q; (see the proof of Theorem 3.1). Hence w < 0 in Q. If Q is elliptic at v the 
result follows from the minimum principle for supersolutions. 0 

A uniqueness theorem for the Dirichlet problem for quasilinear elliptic 
operators follows immediately from Theorem 10.1. 

Theorem 10.2. Let u, v E COm) n C2(Q), satisfy Qu = Qv in Q, U = v on iJQ, 
and suppose that conditions (i) to (iv) in Theorem 10.1 hold. Then u == v in Q. 

Condition (ii) in the hypotheses of Theorems 10.1 and 10.2 might appear un
necessarily restrictive. However, we shall show below that the conclusions of 
Theorems 10.1 and 10.2 are not generally valid when the principal coefficients 
depend on z. The comparison principle, Theorem 10.1, will be useful in the establish
ment of boundary gradient estimates in Chapter 13. 

By using the maximum principle for strong solutions (Theorem 9.1) in place of 
Corollary 3.2, we see that Theorems 10.1 and 10.2 remain valid when the functions 
u, v E COm) n C'(Q) n wto·cn(Q). 

10.2. Maximum Principles 

Using Theorem 10.1 we can derive the following quasi linear extension of the apriori 
bound (Theorem 3.7), which also illustrates the significance of the 8 function. 

Theorem 10.3. Let Q be elliptic in Q and suppose that there exist non-negative con
stants J.l, and J.l2 such that 

(10.10) b(x, z, p) sign z J.l,lpl + J.l2 I.I( ) on R Rn 
-'-...".--=--=---~ 2 v x, z, P E ali X X • 

8(x, z, p) Ipl 

Then, if u E CO(U) n C2(Q) sati~fies Qu ~O( =0) in Q, we have 

(10.11) sup u(lul)~sup u+(luIH CJll 
n on 

where C=C(Jl" diam Q). 

Proof Let u E Co«(.!) n Cl(Q) and satisfy Qu ~O in Q, and define the operator 
Qby 
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We choose a comparison function vas in the proof of Theorem 3.7; namely, for 
f12 >0 we set 

l'(X)=SUP u+ +f12(e~d-eUI), 
DQ 

where Q is assumed to lie in the slab, 0 < x I < d, and (J. ~ f11 + 1. Then we have in 
Q + = : x E Q I u( x) > 0: ' 

by (10.10) 

<0 ~Qu. 

Hence, by Theorem 10.1, we have u ~ v in Q. The result for f12 = 0 follows by letting 
f12 tend to zero. 0 

For uniformly elliptic operators, condition (10.10) is equivalent to a condition 
of the form 

(10.12) 
b(x, Z, p) sign z 

1( ) ~f1llpl+f12' 
I\, x, z, P 

An example of a non uniformly elliptic operator that satisfies (10.10), but not (10.12), 
is given by 

It is clear from the proof of Theorem 10.3 that in the hypotheses we need only have 
assumed that (i) Iff > 0 in Q x ~ x ~n; (ii) Q is elliptic with respect to u; and (iii) 
there exists a fixed vector Po E ~n such that (10.10) hold for all (x, z, tpo) with 
(x, z, t) E Q x ~ x R Further maximum principles are treated in Problems 10.1, 
10.2. 

The condition (10.12) may alternatively be generalized to non uniformly elliptic 
operators by using the Aleksandrov maximum principle (Theorem 9.1). Following 
the notation in Chapter 9, we set 

~ = det [aii(x, z, p)], 

Theorem 10.4. Let Q be elliptic in Q and suppose there exist non-negative constants 
f11 and f12 such that 

(10.13) 
b(x, z, p) sign z 

~* ~ 1111pl + 112 
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Then, if u E CO(Q) n C2(D) satisfies Qu ~ 0 (= 0) in D, we have 

(10.14) sup u(lul) ~ sup u+(lul) + CJl2 
U iJU 

where C = C(Jll. diam Q). 

Proof. In the subdomain D+ = {xEDlu(x) > O}, we have 

o ~ Qu = aiiDiju + b sign u 

~ aiiDiju + [Jll(sign Dju)Dju + Jl2]~·' 

and therefore the estimate (10.14) for sup II follows by Theorem 9.1. The full 
U 

estimate (10.14) is obtained by replacing U with -u in the proof. 0 

Theorem 10.4 is in fact implicit in the proof of Theorem 9.1. More generally, we 
have from Lemma 9.4, the following result. 

Theorem 10.5. Let Q be elliptic in the bounded domain D and suppose there exist 
non-negative functions 9 E L~oc(lRn), hE L n(Q) such that 

(10.15) 

(10.16) 

b(x, Z, p) sign Z h(x) 
---.,----- ~ -

n~· g(p) 

f hn dx < f gn dp = g"". 

U R" 

V(x, z, p) E D x IR x IRn, 

Then if u E C°(D) n C 2(Q) satisfies Qu ~ 0 ( = 0) in D, we have 

(10.17) sup u(lul) ~ sup u+(lul) + C diam D. 
U iJU 

where C depends on 9 and h. 

The quantity g"", as is the case in Theorem 9.1, may be infinite so that (10.16) 
becomes superfluous. If the function 9 is positive and G is defined by 

G-1(t) = f gn dp 

B,(O) 

so that G: (0, 9 a,) -+ (0, (0), then the constant C in (10.17) is given by 
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To complete this section we consider the application of Theorem 10.5 to the 
equation of prescribed mean curvature (10.7). Here 

so that we may take 

By a calculation, we obtain 

and hence we have the following estimate: 

Corollary 10.6. Let u E CoCO) (\ C2(D) be a solution of the prescribed mean 
curvature equation (l0.7) in the bounded domain D. Then, if 

(10.18) 

we have 

(10.19) sup lui ~ sup lui + C diam D, 
U iJU 

where C = C(n, H 0)' 

Finally we remark that the estimates of this section continue to be valid for 
subsolutions or solutions u assumed only in CoCO) (\ W~o'cn(Q). 

10.3. A Counterexample 

The following example shows that Theorems 10.1 and 10.2 cannot in general be 
extended to allow the principal coefficients aU to depend on u. We consider an 
operator Q of the form 

(10.20) 
x·x· 

QU=L1u+9(r, u) ~ DiP' r=lxl, 
r 

in the spherical shell .0= {x E ~n I I < Ixl < 2}. If u = u(r), the equation Qu = 0 is 
equivalent to the ordinary differential equation 

u" +u' C(~~~»)=O. 
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Let v and w be polynomials satisfying the conditions 

(i) v(l)=w(l), v(2)=w(2); 

(ii) v', w'>O in [1, 2]; 

(iii) v'(l)<w'(l), v'(2»w'(2); 

(iv) v", w"<O in [1, 2]; 

w"(l) v"(l) w"(2) v"(2) 
(v) w'( 1) = v'( 1) , w'(2) = v'(2) ; 

and define for 1 ~r~2, v~u~w, 

u-v (VII WII) v" 
f(r, u)=-- --, ---;' 

w-v v' w v 

n-l 
g(r, u)= -I +-_. 

r.fl..r, u) 

Then, writing v(x)=v(lxl), w(x)=w(lxl), we see that Qv=Qw=O in a and V=W 
on aa. Also Q is elliptic with respect to both v and w. Furthermore, by extending 
f in an appropriate way to the strip [I, 2] x IR, we can obtain an operator Q 
that is uniformly elliptic in a and whose coefficients belong to COO(U x IR). 

lOA. Comparison Principles for Divergence Form Operators 

Interesting variants of Theorem 10.1 can be obtained when the operator Q is of 
divergence form (10.5). We recall from Chapter 8 that a function u, weakly differen
tiable in a, satisfies Qu~O (=0, ~O) in a if the functions A'(x, u, Du), B(x, u, Du) 
are locally integrable in a and 

(10.21) Q(u, lp)= f (A(x, u, Du)·Dlp- B(x, u, Du)lp) dx~O( =0, ~O) 
a 

for all non-negative lp E C ~(U). The following theorem provides three alternative 
criteria for a comparison principle. 

lbeorem 10.7. Let u, v E C1(D) satisfy Qu ~ 0 in a, Qv ~ 0 in a and u ~ von aa, 
where the functions A, B are continuously differentiable with respect to the z, p 
variables in a x IR x IR", the operator Q is elliptic in a, and the function B is non
increasing in z for fixed (x, p) E a x IR". Then, if either 

(i) the vector function A is independent of z; or 
(ii) the function B is independent ofp; or 

(iii) the (n+ 1) x (n+ I) matriX, 

[Dpj~i(X' z, p) - DpjB(x, z, P)J~o in a x IR x IR"; 
D%A'(x, z, p) - DzB(x, z, p) 

it follows that u ~ v in a. 
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Proof Let us define 

W=U-v, 

U,=tU+(I-t)v, O~t~ I, 

1 

dj(x) = f DpjAi(X, Up Du, ) dt, 
o 

1 

bi(x)= f DZAi(x, Up Du, ) dt, 
o 

1 

Ci(X)= f Dp;B(x, u,' Du, ) dt, 
o 

1 

d(x)= f DZB(x, Up Du, ) dt. 
o 

Then we have 

(10.22) O~Q(U, qJ)-Q(V, qJ) 

= f{(A(X, u, Du)-A(x, v, Dv»·DqJ 
D 

- (B(x, u, Du) - B(x, v, DV»qJ} dx 

= f {(dj(x)Djw + bi(x)w)DiqJ - (dx)Diw + d(x)w)qJ} dx 
u 
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for all non-negative qJ E C ~(Q). Hence Lw ~O where L is the linear operator given 
by 

Since u, VEe I(Q), there exist by the hypotheses positive constants A, A such that 

aij(x)eiej~AleI2 Ve E IR", x E Q. 

laijl, Ibil, let Idl ~A in Q, d~O in Q, 

and therefore L is strictly elliptic in Q with bounded coefficients. The conclusion of 
Theorem 10.7 can now be obtained directly from the theory of Chapter 8. In par
ticular if condition (i) holds, then bi = 0 in Q so that by the weak maximum principle, 
Theorem 8.1, we have w ~ 0 in Q. Although the remainder of Theorem 10.7 follows 
immediately from Problem 8.1, we include the full proof here. If condition (ii) 
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holds, then ci = 0 in Q. Note that this condition on L is equivalent to the preceding 
condition on the adjoint operator L*. For e > 0, we define 

and obtain from substitution in (10.22), 

A II D log (I + ~+) 12 dx~ Iaij(~~i:+e~jW+ dx 
u a 

~A I w::e I D log (I + ~+) I dx 
u 

~A II D log (1 + we+) I dx. 
u 

Hence using Young's inequality (7.6), we have 

it follows from Poincare's inequality (7.44) that 

II log (I + we+) 12 dx~ C(n, A, A,IQD· 
u 

Letting e - 0, we see that w+ must vanish in Q, that is w~O in Q. 

Finally, if condition (iii) holds, we choose q> = w + in Q and obtain on substitu
tion in (10.22) that 

so that, by Young's inequality (7.6), 

Hence, for any e>O, we have 

/ ( w+)/ 2j"nA w+ 2j"nA Dlog 1+- ~------~---
e A w+ +e A 
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and, since w+ =0 on aa, it follows that 

Letting.: -+ 0 we have, as before, w+ =0 in a, and therefore w~O in a. 0 

Note that when condition (i) holds in Theorem 10.7, we need only assume that 
u, v E COm) n C1(U) and that the derivatives of the coefficients belong to 
CO(a x ~ X ~n). This is easily seen by applying the result of Theorem 10.7 to a 
subdomain a' c c a. A similar extension is valid in the other cases provided the 
coefficients satisfy an appropriate uniform structure condition. 

10.5. Maximum Principles for Divergence Form Operators 

When the operator Q is of divergence form, we can derive maximum principles 
under different hypotheses from those of Theorems 10.3 and 10.4. We shall assume 
that the functions A and B in (10.5) satisfy the following structure conditions: 

For all (x, Z, p) E a x ~ X ~n and some a;;?: 1, 

(10.23) 

here a l' a2' bo, b l' b2 are non-negative constants. The first inequality in (10.23) can 
be viewed as a weak ellipticity condition (see Problem 10.3). The development 
below is similar to the derivation of global estimates for weak solutions of linear 
elliptic equations in Chapter 8. 

Lemma 10.8. Let U E COm) n C1(U) satisfy Qu ;;?: 0 in a, and suppose that Q 
satisfies the structure conditions (10.23). Then we have 

(10.24) sup u~C{llu+II .. +(al +b1) sup u+ +a2 +b2}+sup u+ 
u m m 

Proof Let us assume initially that u E C1(U) and u ~ 0 on aa so that 
sup u+ =0. The proof follows that of Theorem 8.15 with this difference: in the 
au 
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present case, u is assumed bounded at the outset and hence it is unnecessary to 
truncate the power functions used as test functions. By writing 

z=lzl+k, 

we obtain from inequalities (10.23), with the help of Young's inequality, 

p·A(x, z.p)~lpl"-5Izl" 
(10.25) 

_ . {JlIPI"+(Jl 1 -"+1)5Z" ifa>l, 
zB(x, z, p) Sign z~ 5z if a= I, 

where Jl > O. Hence substituting in the integral inequality (10.21) the function 

qJ=w/J-k/J 

where w=u+ =u+ +k, P~ I, and choosing Jl=P/2, we obtain 

f w/J-IIDwl"dx~C5 f W,,+/J-l dx, 
n n 

where C=C(P). By the Sobolev inequality (7.26), there exists a number s>a such 
that 

where r=(a+p-l)/a and C= C(n, s, 101). Consequently we have 

II w II,. ~(Cr)I/'(v)I/"'1I wll,,, 

for all r ~ 1. and the estimate (10.24) with sup 1/+ = 0 now follows by the itera
an 

tion argument of Theorem 8.15. To dispense with the initial assumptions con-
cerning u, we replace u by u - L where L = sup u + , and approximate 0 by domains 

an 
O'ccO. 0 

Using Lemma 10.8, we can now derive the following apriori estimates for sub
solutions and solutions of the equation Qu = O. 

Theorem 10.9. Let u E CO(Q) n C1(Q) satisfy Qu ~ 0 (=0) in Q and suppose that 
Q satisfies the structure conditions (10.23) with a > I,b l = Oandeitherboora l = O. 
Then we have the estimate 

(10.26) sup u(lul)~ C(a2 +b2 +a1 sup u+(lul»+sup u+(lul) 
n m an 

where C=C(n, a, ai' bo, 101). 
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Proof As in the proof of Lemma 10.8 we can assume initially that U E C 1(Q) and 
u~O on aa. We also assume that k>O. The two cases bo=O, a1 =0 will be con
sidered separately. 

(i) Suppose bo=O. We then substitute 

1 1 _+ 
CP=/(,--I- w"-I' w=U, 

into the integral inequality (10.21) to obtain 

(a-1) fl~wr dx~cJjlal, 
a 

so that 

fiDIOg~r dx~a:l olal· 
a 

Hence, by Poincare's inequality (7.44), 

fllOg ir dx~Co 
a 

where C = C(n, 0(, I a I). Now writing M = sup w, we have by the proof of Lemma 
lQ8 a 

(~r ~C f(iJ dx 
a 

~~~r(IOg~r« [(l+IIOgir)dx, 
so that 

Hence M ~ Ck where C = C(n, 0(, a l' lal). 

(ii) Suppose a1 =0. The proof is then similar to that of Theorem 8.16. Writing 
again M = sup w, we substitute 

a 

I I 
CP=I-M---w-+-kl" 1 - M,,-l 
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into (10.21) to obtain 

II Dw III II Dw 1
11

-
1 

(ex-I) M-w+k dx~bo M-w+k dx 
u u 

Using Young's inequality (7.5), we then have 

where C=C(a), and hence, by Poincare's inequality (7.44), 

(10.27) 

where C=C(n, ex, lal). To proceed further, we take 

in (10.21), where r[ ~ 0, supp r[ C supp u+ and r[ E cMU). We then obtain from the 
structure conditions (10.23) the inequality 

The function w=log [M/(M-w+k)] accordingly satisfies Qw~O in a+= 
{x E al u(x) > O}, where the operator Q fulfills the structure conditions (10.23) 
with a l = hi = 0 and a2' b2 ~ ex. Hence, by Lemma 10.8, 

sup w~C(lIwIl2+ I) 
U 

~ C(n. IX. bo• lal) by (10.27) 

Consequently M ~ Ck. The case k = 0 is obtained by letting k tend to zero. By 
removing the conditions, U E CI(Q), U ~ 0 on aa, as in the proof of Lemma 10.8, 
we obtain the estimate (10.26) in each case. 0 
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As a byproduct of the existence theory for the equation of prescribed mean 
curvature in Chapter 16, we shall see that Theorem 10.9 cannot be extended to allow 
IX= I in its hypotheses. The following estimate, which includes the case IX = I. 
requires that the structure constants a I' ho and h I be sufficiently small. 

Theorem 10.10. Let U E Com) n C1(Q) satisfy Qu ~ O( =0) in 0 and suppose 
that Q satisfies the structure conditions (10.23). Then there exists a positive constant 
Co=Co(IX, n) such that!! 

(10.28) 

we have the estimall' 

(10.29) sup u(luj) ~ C{(a l + hi) sup u+ (Iul)+ a2 + h2 } + sup u+(luj), 
n ~ ~ 

Proof. By virtue of Lemma 10.8 we need only estimate Ilu+ II",. As in the preceding 
proofs we assume initially that u E C I(n) and u ~ 0 on 00. Substituting cp = u + = v 
into the integral inequality (10.21), we obtain by (10.23) 

fIDvl"dx~ f {(a~ +b~-I)V2+bovIDvl"-1 +ct; +b~-IV} dx 
n n 

for arbitrary £>0, by inequality (7.6). Taking, in particular. t=1X 1ill -", for IX¥-I, 
and using the Poincare inequality (7.44) we obtain for IX~ I 

Hence if 

we have 

f v" dx~ C(n, 1X)IOI"'· f {(a~ + ~- I + b~)l'" +a~ +b'r IV} dx. 
n n 

C(n, 1X)IOI*(a~ + b~ - 1 + b~) < I, 

f v" dx~C(a~ +b~) 
n 

and the desired estimate (10.29) follows. 0 
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Note that when ex = 1 in Theorem lO.lO, the constants b l and b2 are not present 
in inequalities (10.28) and (10.29). By invoking the Poincare inequality (7.44) in the 
sharp form 

(10.30) Ilvl dX~~ (IUI/wn)l!n IIDvl dx. v E W~·I(Q), 
U U 

we can in this case take 

By writing the equation of prescribed mean curvature (lO.7) in its divergence form, 

(10.31) . Du H dlv n • 
JI+I DuI2 

we see that it satisfies the structure conditions (lO.23) with ex = 1, a l = 0, a2 = 1, 
b2 =n sup IHI. Hence, if the function H satisfies 

u 

(10.32) H o = sup IHI «wn~Ol)lln, 
u 

we have for any C2(0) (', CO(Q) subsolution (solution) of equation (lO.31) the 
estimate 

(10.33) sup u(lul) ~ sup u(lul) + C(n. 101. H 0). 
u au 

We conclude this section by noting that the structure conditions (10.23) can be 
generalized to allow the quantities al' a2 , bo' bl' b2 to be nonnegative measurable 
functions. In particular if we assume a l • a2 • boo VI' v2 ' E L'(O) where q is such that 
q ~ oc and q > n and VI = bl -1111, v2 = bi -1/11, then Lemma lO.8 and Theorem lO.9 
continue to hold provided in inequalities (lO.24) and (lO.26), ai' a2' bo, b l , b2 are 
replaced respectively by Ilalll,.lla211" IIboll,.lIvlllz/lII-I), Ilv211:1(1I-1) and the con
stants C depend additionally on q. Theorem lO.lO can be similarly extended, the 
condition (10.28) being replaced by 

(lO.34) 

where p= max (I, n/'X). For the example of the equation of prescribed mean 
curvature (lO.31) mentioned above, we obtain the more general result (already 
demonstrated in Corollary lO.6 by different means) that if the function H satisfies 

(10.35) 
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then the maximum principle (10.33) holds with H o = \\Hlln. The proofs of these 
assertions are basically the same as the case when a I' a2 , bo' bl' b2 are constant; (see 
Problem 10.4). Finally we remark that all the results of this section and their proofs 
are still applicable if the function u belongs to the Sobolev space Wi. 'Q) instead of 
the space C 2(Q) n Co(.O). 

Notes 

The early results of this chapter, Theorems 10.1, 10.2, and 10.3 are basically 
variants of the Hopf maximum principle, Theorem 3.1. The counterexample in 
Section 10.3 is due to Meyers [ME 2]. Parts (i) and (ii) of the comparison principle, 
Theorem 10.7, were proved in Trudinger [tR 10]. Part (ii) extends an earlier result 
of Douglas, Dupont and Serrin [DDS]. Part (iii) was essentially proved in Serrin 
ESE 3]. The maximum principle, Theorem 10.9, is a new result in this work although 
the technique of its proof has already been demonstrated in [TR 7]. For further 
maximum principles of quasilinear equations the reader is referred to the works 
ESE 3], ESE 5]. 

We also note here that the form (10.30) of the Poincare inequality is a conse
quence of the isoperimetric inequality; (see for example [FE]). Theorem 10.5 and 
Corollary 10.6 appear in Bakelman [BA 5]. 

Problems 

Use the comparison principle, Theorem 10.1, to establish the following maximum 
principles in Problems 10.1, 10.2. 

10.1. Let Q be elliptic in D x IR x {O} with coefficients aii, b, i,j = 1, ... , n, differen
tiable with respect to the p variables in D x IR x IR". Suppose that there exists a 
constant M such that 

(10.36) zb(x, Z, O)~O for x E D,\z\ ~M. 

Then, if u E C°(.O) n C 2(Q) satisfies Qu~O( =0) in D, we have 

(10.37) max u(\uj)~max {M, max u+(\uj)l. 
!1 iJ!1 

10.2. Let D lie in a ball BR of radius R and suppose that Q is elliptic in D and that 

(10 38) ( . ) b( ) \p\ aT( ) aT [ ii] . sign Z x, Z,P ~R:Y x, Z,p, :y =trace a . 

for all x E D,\z\ ~M, \p\ ~L for constants M and L. Then, if u E COUl) n C 2(Q) 
satisfies Qu~O( =0) in D, we have ([SE 3]) 

(10.39) max u(\ul>~max {M, max u+(jul>}+2LR. 
n iJn 

(Hint : Follow the proof of Theorem 10.3 with the half-space, XI> 0, replaced by 
BR·) 
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10.3. Let Q be an operator in the divergence form (10.5). Show that 

(10.40) 
I 

p' A(x, z, p)= f S-2S(X, z, sp) ds+p· A(x, z, 0). 
o 

Hence show that if S ~ clpl~, where c > 0 and IX> 1, then 

(10.41) c ~ 
p.A(x, z, P)~-lipi +p.A(x, z, 0). 

IX-

10.4. Verify the assertions made at the end of Section 10.5. 

10.5. Let .s;I(p) = [aij(p)] be the coefficient matrix ofthe minimal surface operator 
given by 

PE IR". 

Verify that 1 is an eigenvalue of .s;I with eigenvector p and that 1 + I p 12 is the only 
other eigenvalue with eigenspace consisting of vectors orthogonal to p. 

10.6. Apply Theorem 10.5 to the equations 

where 0 :s;; S < 00. 



Chapter 11 

Topological Fixed Point Theorems and Their 
Application 

In this chapter the solvability of the classical Dirichlet problem for quasilinear 
equations is reduced to the establishment of certain apriori estimates for solutions. 
This reduction is achieved through the application of topological fixed point 
theorems in appropriate function spaces. We shall first formulate a general criterion 
for solvability and illustrate its application in a situation where the required apriori 
estimates are readily derived from our previous results. The derivation of these 
apriori estimates under more general hypotheses will be the major concern of the 
ensuing chapters. 

The fixed point theorems required for the treatment presented here are obtained 
as infinite dimensional extensions of the Brouwer fixed point theorem, which 
asserts that a continuous mapping of a closed ball in Ill" into itself has at least one 
fixed point. 

11.1. The Schauder Fixed Point Theorem 

The Brouwer fixed point theorem can be extended to infinite dimensional spaces 
in various ways. We require first the following extension to Banach spaces. 

Theorem 11.1. Let 6 be a compact convex set in a Banach space 9J and let T be a 
continuous mapping of 6 into itself. Then T has a fixed point, that is, Tx = x for 
some x E 6. 

Proof Let k be any positive integer. Since 6 is compact, there exists a finite 
number of points Xl ... , xN E 6, where N=N(k), such that the balls B=Bl/,,(x j ), 

i= 1, ... ,N, cover 6. Let 6"c6 be the convex hull of {Xl' ... , x N }, and define 
the mapping J,,: 6 -+ 6" by 

J x=L di~t (x, 6-B~xj. 
" L dlst (x, 6-8) 

Clearly J" is continuous and for any x E 6 
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(ll.l ) 

The mapping lk 0 T when restricted to 6 k is accordingly a continuous mapping of 
6 k into itself and hence, by virtue of the Brouwer fixed point theorem, possesses a 
fixed point X 1k ). (Note that 6 k is homeomorphic to a closed ball in some Euclidean 
space.) Since 6 is compact, a subsequence of the sequence X(k), k = 1, 2, ... , con
verges to some x E 6. We claim that x is a fixed point of T. For, applying (11.1) to 
TX 1k ), we have 

and, since T is continuous, we infer Tx = x. 0 

As will be demonstrated in the next chapter, Theorem 11.1 is applicable to 
broad classes of equations in two variables. For later purposes we note the following 
extension of Theorem 11.1. 

Corollary 11.2. Let 6 be a closed convex set in a Banach space m and let T be a 
continuous mapping of6 into itself such that the image T6 is precompact. Then T has 
a fixed point. 

In the above theorems we note an essential difference from the contraction 
mapping principle, Theorem 5.1, in that the fixed points whose existence is asserted 
are not necessarily unique. 

11.2. The Leray-Schauder Theorem: a Special Case 

A continuous mapping between two Banach spaces is called compact (or completely 
continuous) if the images of bounded sets are precompact (that is, their closures are 
compact). The following consequence of Corollary 11.2 is the fixed point result 
most often applied in our approach to the Dirichlet problem for quasilinear 
equations. 

Theorem 11.3. Let T be a compact mapping of a Banach space m into itself, and 
suppose there exists a constant M such that 

(11.2) 

for all x E m and a E [0, 1] satis/ring x = aTx. Then T has a fixed point. 

Proof We can assume without loss of generality that M = 1. Let us define a 
mapping T* by 
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{
TX 

T*x= II~~II 
if II Txll ~ 1, 

ifll Txll ~ 1. 

281 

Then T* is a continuous mapping of the closed unit ball Bin 113 into itself. Since TB 
is precompact the same is true of T*B. Hence by Corollary 11.2 the mapping T* 
has a fixed point x. We claim that x is also a fixed point of T. For, suppose that 
II Txll ~ 1. Then x= T*x=aTx if a= 1/11 Txll, and IIxll = II T*xll = 1, which contra
dicts (11.2) with M = 1. Hence II Txll < I and consequently x = T*x= Tx. 0 

Remark. Theorem 11.3 implies that if T is any compact mapping of a Banach 
space into itself (whether or not (11.2) holds), then for some a E (0, I] the mapping 
aT possesses a fixed point. Furthermore, if the estimate (11.2) holds then aThas a 
fixed point for all a E [0, I]. 

In order to apply Theorem 11.3 to the Dirichlet problem for quasilinear 
equations, we fix a number f3 E (0, 1) and take the Banach space 113 to be the Holder 
space C 1.1i(Q), where Q is a bounded domain in IR". Let Q be the operator given by 

and assume that Q is elliptic in Q, that is, the coefficient matrix [aij(x, z,p)] is posi
tive for all (x, z, p) E Q x IR x IR". We also assume, for some (X E (0, I), that the 
coefficients di, b E C~( Q x IR x IR"), that the boundary oQ E C 2. ~ and that cp is a 
given function in C 2. ~(Q). For all VEe I. Ii( Q), the operator T is defined by letting 
u = Tv be the unique solution in C 2. ~Ii( Q) of the linear Dirichlet problem, 

(11.4) di(x, v, Dv)Dip+b(x, v, Dv)=O in Q, u=cp on oQ. 

The unique solvability of the problem ( 11.4) is guaranteed by the linear existence 
result, Theorem 6.14. The solvability of the Dirichlet problem, Qu=O in Q, u=cp 
on oQ, in the space C2'~(Q) is thus equivalent to the solvability of the equation 
U= Tu in the Banach space 113 = C1.1i(Q). The equation u=aTu in 113 is equivalent 
to the Dirichlet problem 

(11.5) Q"u=aij(x, u, Du)Dip+ab{x, u, Du)=O in Q, u=acp on oQ. 

By applying Theorem 11.3, we can then prove the following criterion for existence. 

Theorem 11.4. Let Q be a bounded domain in IR" and suppose that Q is elliptic in 
Q with coeffiCients d i , b E e(Q x IR x IR"), ° < (X < I. Let oQ E C2.~ and cp E C 2.2(Q). 
Then, if for some f3 > ° there exists a constant M, independent of u and a, such that 
every C2'~(Q) solution of the Dirichlet problems, Q"u=O in Q, u=acp on oQ, 
O~a~ I, satisfies 
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itfollows that the Dirichlet problem, Qu = ° in D, u = cp on oD, is solvable in e 2. %(0). 

Proof In view of the remarks preceding the statement of the theorem, it only 
remains to show that the operator T is continuous and compact. By virtue of the 
global Schauder estimate, Theorem 6.6, T maps bounded sets in e l • II(Q) into 
bounded sets in e 2."II(Q) which (by Arzela's theorem) are precompact in e 2m) 
and C I. 11m). In order to show the continuity of T, we let vm ' m = l, 2, ... , converge 
to v in el. lI(Q). Then, since the sequence {Tvm} is precompact in e2(Q), every 
subsequence in tum has a convergent subsequence. Let {Tvm} be such a convergent 
subsequence with limit u E e2(Q). Then since 

di(x, v, Dv)Dip+ b(x, v, Dv) 

= lim {aii(x, vm' DVm)DijTvm+b(x, vm' Dvm)}=O, 
m-"" 

we must have U= Tv, and hence the sequence {Tvm 1 itself converges to u. 0 

11.3. An Application 

Theorem 11.4 reduces the solvability of the Dirichlet problem Qu = ° in D, u = cp 
on oDto the apriori estimation in the space e I. 11(.0), for some P>O, of the solutions 
of a related family of problems. In practice it is desirable to break the derivation 
of the apriori estimates into four stages: 

I. Estimation of sup lui; 
n 

II. Estimation of sup IDul in terms of sup lui; 
an n 

III. Estimation of sup IDul in terms of sup IDul and sup lui; 
n M n 

IV. Estimation of [Du],;n' for some P>O, in terms of sup IDul, sup lui. 
n n 

Step I has already been treated in Chapter 10; (see Theorems 10.3, 10.4 and 10.9). 
Steps II and III are treated in Chapters 14 and 15. In Chapter 13 it will be shown that 
Step IV can be carried out under very general hypotheses on Q. We shall illustrate 
the overall procedure here by considering a problem where the required estimates 
are readily obtained from some of the results in earlier chapters. Namely, let us 
suppose that either Q has the special divergence form, 

(11.7) Qu=div A(Du), 

or that n = 2 and Q has the form 

(11.8) Qu=aii(x, u, Du)Diju. i,j= 1,2. 
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We shall demonstrate in Chapter 14 that geometric conditions on the boundary 00 
play an important role in the solvability of the .Dirichlet problem for quasilinear 
equations. For our present purposes, we shall require that the boundary manifold 

r = (00, cp)= {(x, z) E 00 x !R I Z= cp(x)} 

satisfies a bounded slope condition, that is, for every point PEr there exist two 
planes in !R"+ 1, z=n;(x) and z=n;(x), passing through P such that: 

(i) n;(x)~cp(x)~n;(x) "Ix E 00; 
(ii) the slopes of these planes are uniformly bounded, independently of P, 

by a constant K; that is IDnil ~ K for all PEr. 

If 00 E c 2 , cp E C 2(Q) and cO is uniformly convex (that is, its principal curvatures 
are bounded away from zero), then r satisfies a bounded slope condition; (see 
[HA]). We now can assert the following existence result. 

Theorem 11.5. Let Q have either of the forms (11. 7) or (11.8), and suppose that 
Q, 0 and cp satisfy the hypotheses of Theorem 11.4. Then if, in addition, the boundary 
manifold (00, cp) satisfies the bounded slope condition, it follows that the Dirichlet 
problem, Qu=O in 0, u=cp on 00, is solvable in C 2 ,.2(Q). 

Proof Since Q" = Q, we must estimate the solutions of the Dirichlet problems, 
Qu=Oin 0, u=(UP on 00, O~ (J~ I. Let us take in tum the different stages described 
above. 

I. From the weak maximum principle, (Theorems 3.1 or 10.3), we have 

(11.9) sup lul=(1 sup Icpl~sup Icpl. 

II. The bounded slope condition provides linear barriers which serve to 
estimate Du on cO. For clearly 

and hence, by the weak maximum principle, 

for all x E O. Consequently we have 

(11.10) sup IDul~(1K~K, 
iJU 

where K is the assumed bound for the slopes of n: . 
III. Steps III and IV will follow from the fact that the derivatives Dtu, k = 

I, ... , n, are weak solutions of simple linear divergence structure equations of the 
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type treated in Chapter 8. Let us first suppose that Q has the form (11.7) and write 
the equation Qu=O in its integral form. 

(11.11) f A(Du)·D'1 dx=O "1'1 E Cci(Q)· 
Q 

Fixing k, replacing '1 by Dk'1 and then integrating by parts, we obtall1 

f Dp,Ai(Du)DkpDi'1 dx=O "1'1 E Cci(Q), 
Q 

f aii(Du)DjwDi'1 dx=O V'1 E q(Q). 
Q 

The function WE C I(Q) is thus a weak solution of the linear elliptic equation 

(11.12) 

where aii(x) = aii(Du(x», and hence, by the weak maximum principle in Section 3.6 
(see also Theorem 8.1), we have 

(11.13) sup IDul = sup IDul ~ K. 
u au 

Next. if Q has the form ( 10.8), the equation Qu = 0 is equivalent to 

so that 

Replacing '1 by D I '1 and integrating by parts, we obtain for w = DIu, 

and hence ~. is a weak solution of the linear elliptic equation 

(11.14) 
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with coefficient matrix 

[

all 

[ .. ] 2I (x, U(x), Du(x)) 
a'/(x) = a 

o 
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2a l2 
] -IT (x, U(X), Du(x» 

a . 
I 

Similarly, it follows that D211 is a weak solution of a corresponding linear elliptic 
equation and hence again, by the weak maximum principle, the estimate (11.13) 
holds. 

IV. The equations (11.12) and (11.14) for the derivatives Dku will satisfy the 
hypotheses of Theorem 8.24 with constants A and A depending on sup lui, sup IDul 

a a 
and the coefficients aij. Consequently we obtain an interior Holder estimate for Du, 
that is, for any subdomain a' c ca, we have 

(11.15) 

where the positive constants C and P are independent of u and (1, and d = dist (a', va). 
We cannot however infer a global Holder estimate for Du directly from the 
results of Chapter 8. Instead we proceed as follows. We first use the smoothness of 
va to map portions of va into the hyperplane xn=O. The derivatives Dyku, k= 
I, ... , n - I, with respect to the transformed coordinates Y I' ... , Yn can then be 
estimated by means of Theorem 8.29. The remaining derivative Dy.u is finally 
estimated by using the equation itself together with Morrey's estimate, Theorem 
7.19. The details of this procedure are carried out in Chapter 13 for the general 
divergence structure equation. The resulting estimate 

01.16) 

with positive constants p and C independent of u and (1 completes the proof of 
Theorem 11.5. 0 

We note here that from the results of Chapter 14 it will follow that the bounded 
slope condition in the hypothesis of Theorem 11.5 can be replaced by the 
boundedness of the quantity 

A(x, z, p)1 pi 

I(x, z, p) 

for x E n, Izl~sup 1<p1, Ipl;:: I; (see Theorem 14.1). Furthermore, if a is convex, 
00 

the bounded slope condition can be replaced by the boundedness of the quantity 

A(x, z, p) 

dj(x, z,p)(pj-Dj<p)(Pj-D,.({J) 

for x En, Izl ~ sup 1<p1, I pi;:: I (see Theorem 14.2). 
00 
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11.4. The Leray-Schauder Fixed Point Theorem 

For certain applications it is desirable to replace the family of Dirichlet problems. 
Q"u = 0 in Q, u = acp on oQ, 0 ~ a ~ I, used in Theorem 11.4 by other families 
which depend differently on the parameter a. Accordingly, we shall require the 
following generalization of Theorem 11.3. 

Theorem 11.6. Le/~bea Banach space and let Tbeacompactmappingof'!J x [0.1] 
into '!J such that T(x, 0) = 0 for all x E '!J. Suppose there exists a constant M such thaI 

(11.17) IIxll~<M 

for all (x, a) E '!J x [0, 1] satisfying x = T(x, a). Then the mapping Tl of'!J into itself 
given by T\ x = T(x, I) has a fixed point. 

Theorem 11.6 will be derived from the following consequence of Corollary 11.2. 

Lemma 11.7. Let B=B\(O) denote the unit ball in '!J and let T be a continuous 
mapping of B into '!J such that TB is precompact and T oBcB. Then T has afixed 
point. 

Proof We define a mapping T* by 

* _{TX ifllTxll~l 
T x - Tx if II Tx II ~ 1. 

IITxll 7 

Clearly T* is a continuous mapping of B into itself and since TB is precompact. the 
same is true of T* B. Hence, by Corollary 11.2, T* has a fixed point x and since 
T oBcBwe must have IIxll < 1 and therefore x= Tx. 

Proof of Theorem 11.6. We can assume without loss of generality that M = 1. 
For O<e~ I, let us define a mapping T* from B into '!J by 

{ 
( X l-IIXII ) . 

T -,-- Ifl-e~lIxll~l, 

T*x= T*x= IIxll e I 

£ T(~' I) ifllxll<l-e. 
I-e I 

The mapping T* is clearly continuous, T* B is precompact by the compactness of T 
and T*cB=O. Hence. by Lemma 11.7. the mapping T* has a fixed point x(e). 
We now set 
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where k = 1, 2, . . .. By the compactness of T we can assume, by passing to a 
subsequence if necessary, that the sequence {(xk , ak )} converges in ~ x [0,1] to 
(x, a). It then follows that a=1. For ifa<l, we must have IIxkll~I-I/k for 
sufficiently large k and hence IIx II = 1, x = T(x, a), which contradicts (11.17). 
Since a = 1, we then have by the continuity of Tthat T!/kXk ~ T(x, 1), and therefore 
x is also a fixed point of T 1 • 0 

We note that Theorem 11.3 corresponds to the special case of Theorem 11.6 
where T(x, a)=aT1x. Now let Q be an operator of the form (11.3) and suppose 
that Q, 0 and qJ satisfy the hypotheses of Theorem 11.4. In order to apply Theorem 
11.6 to the Dirichlet problem, Qu=O in 0, U=qJ on 00, we imbed this problem 
in a family of problems, 

such that: 

Q"U = di(x, u, Du; a)Dip+b(x, u, Du; a)=O in 0, 

u=aqJ on 00, O~a~ I, 

(i) Ql =Q, b(x, z,p; 0)=0; 
(ii) the operators Q" are elliptic in li for all a E [0, I]; 
(iii) the coefficients d J, bE Co( C~(li x IR x IR"); [0, I ]), that is, ii, bE 

C"'(O x IR x IR") for each a E [0, I] and considered as mappings from [0, 1] 
into C"'(O x IR x IR"), the functions ail, b are continuous. 

For all VEe 1.1I(D), a E [0, I] the operator T is defined by letting u = T( v, a) be the 
unique solution in C 2."'II(O) of the linear Dirichlet problem, 

aij(x, v, Do; a)Dip+b(x, v, Dv; a)=O in 0, u=aqJ on 00. 

From condition (i) above we see that the solvability of the Dirichlet problem, 
Qu=O in 0, U=qJ on 00, in the space C2'~(Q) is equivalent to the solvability of 
the equation U= T(u, I) in the Banach space C 1•1I(Q), and that T(u, 0)=0 for all 
v E C 1•1I(D). The continuity and compactness of the mapping T are assured by 
conditions (ii) and (iii); the details of this argument are similar to the proof of 
Theorem 11.4 and are leftto the reader. Hence we can conclude from Theorem 11.6 
the following generalization of Theorem 11.4. 

Theorem 11.8. Let 0 be a bounded domain in IR" with boundary 00 E C2.~ and let 
qJ E C 2''''(D). Let {Q", O~a ~ I} be a family of operators satisfying conditions 
(i), (ii), (iii) above and suppose that for some fJ>O there exists a constant M, inde
pendent of u and a, such that every C 2''''(D) solution of the Dirichlet problems 
Q"u=O in 0, u=aqJ on 00, O~a~ I, satisfies 

Then the Dirichlet problem, Qu=O in 0, U=qJ on 00, is solvable in C2·~m). 
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We note here that by means of the theory of topological degree (see [LS]), the 
hypotheses of Theorems 11.6 and 11.8 can be weakened slightly. However, since the 
improvement so obtained is not relevant to the particular applications in this book, 
we have chosen to avoid the theory of degree altogether. 

11.5. Variational Problems 

In this section we consider variational problems and, in particular, their relation
ship with elliptic partial differential equations. Let Q be a' bounded domain in [R" 

and F a given function in C '(Q x [R x [R"). We consider the functional J defined 
on Co. '(Q) by 

(11.18) J(u) = f F(x, u, Du) dx. 

n 

Note that, since u E Co. '(Q), the gradient Du exists almost everywhere and is 
measurable and bounded; (see Section 7.3). Now let <p be a given Co. '(Q) function 
and consider l(u) for all functions u in the set 

The problem we now consider is the following: 

.'!J>: Find UE<& such that l(u)~l(v) for all PEre. 

Let us suppose that u is a solution of fJjJ and let '1 belong to the space 

then the function v = u + 1'1 must belong to <& for every IE [R. Thus J(u) ~ l(u + 1'1) 

for all IE [R, or defining .1(1)= J(u+ t'1), we have .1(0)~.1(t) for all t E R and so 
.1 has a minimum at 0, whence ..I '(0) = O. By differentiation, we therefore obtain 
the equation 

(11.19) f {Dp,F(x, u, Du)D j '1 + D.F(x, u, Du)'1) dx =0 
n 

for all "E <&0' that is the function u is a weak solution of the Euler-Lagran,qe 
equation 

(11.20) Qu=div DpF(x, u, Du)-D.F(x, u, Du)=O, 
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of the classical Dirichlet problem Qu = 0 in Din D, u = qJ on aD. Hence the solvability 
of problem 9 implies the solvability of the Dirichlet problem for equation (11.20). 

Let us call the functional I regular if the integrand F is strictly convex with 
respect to the p variables. Clearly if FE C 2(D x IR x IR"), then the regularity of I 
is equivalent to the ellipticity of the Euler-Lagrange operator Q. We suppose now 
that the function u E Co. '(0) satisfies (11.20) and U=qJ on aD. Then we have 

2 

=.-'(0)+ ~ ."'(0 

for some' such that 1'1 ~ Itl. Ifwe now assume that the function Fisjointly convex 
in z and p so that the matrix 

is non-negative in D x IR x IR", we have 

."'(0= f {Dp;p/(x, u+'", Du+'Drf}Di"Dll 
u 

+2Dp;zF(x, u+'", Du+,D")"Di,, 

+ DzzF(x, u+'", Du+,D,,),,2} dx-;::O, 

and hence .-'(O)~.-'(t) for all t E IR. Consequently the function u is a solution ofthe 
variational problem f!J and moreover if I is regular, we see from Theorem 10.1 that 
u is uniquely determined. Therefore we have proved 

Theorem 11.9. Let I be regular with F jointly convex in z and p. Then the variational 
problem 9 can have at most one solution. Furthermore, the solvability of 9 is equiva
lent to the solvability of the Dirichlet problem for the Euler-Lagrange equation, 
Qu=O, U=qJ on aD, in the space CO. 1(U). 

Alternative Approaches 

By utilizing direct procedures in the calculus of variations, we can develop alterna
tive approaches to the Dirichlet problem for variational operators Q. Direct 
methods which involve the enlargement of the set fI to a subset of an appropriate 
space of weakly differentiable functions are treated in [LV 4] and [MY 5]. We 
describe briefly a further approach which has the advantages that the integrand F 
need not be C 2 and that the solutions obtained are automatically in Co. 1(D). Let 
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us define, for K E IR, 

and consider the problem 

fJJK : Find u E t(jli. such that I(u)~I(r) for all t' E t(jli.. 

For &! Ii. we have the following existence result. 

Theorem 11.10. Let FEC\QxlRxlR n ) and suppose that F,DzF,D FE 
- ~ 

CO(Q x IR x IR"), i= I, ... , n. Then, if F is convex with respect to p, the problem 
fJJ Ii. is solvable for any K such that t(j Ii. is non-empty. 

Proof We show that the functional I is lower semicontinuous on t(j Ii. with respect 
to uniform convergence in Q. Since I is also bounded below on t(j Ii. and t(j Ii. is 
precompact in CO(Q), the result follows. Hence let {u",} c t(j Ii. converge uniformly to 
a function u E t(j Ii.. We then have 

(11.21) I(um)-I(u)= f[F(x, Um' DU",)-F(x, u, Du)] dx 
n 

= f[F(X, um' Dum)-F(x, U, DUm)] dx 
n 

+ f [F(x, u, Dum)- F(x, u, Du)] dx 
n 

;:: - sup IDzFI flum-ul dx 
OX 'CK n 

+ f Dp,F(x, u, Du)Dj(um-u) dx 
n 

by the convexity of F with respect to p. For fixed i, let us set cp = D p,F(x, u, Du) 
and suppose first that cp E C~(Q). Integrating by parts, we then have 

If cp rt C~(Q), then since cp E LOO(Q) there exists, for t:>0, a function CPt E C~(Q) 
such that 
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Then we have 

If cpDj(um-u) dxl~lf cp.Dj(Um-U) dx I 
a a 

+ fICP.-cpIIDj(um -u)1 dx. 
a 
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But f CP.Dj(um-u) dx - 0 as m - 00, and as um' U E ctK,IDj(um-u)1 ~2K, so that 
a 

Hence 

fICP.-cpIIDj(um-u)1 dx<e. 
a 

lim sup If cpDj(um-u) dxl~e 
m .... 00 a 

and, since 6 can be chosen arbitrarily, we conclude from (11.21) that 

lim inf I(um) ~ I(u), 

that is, I is lower semicontinuous on ct K with respect to uniform convergence. 0 

Let us call a solution of problem f!JK , a K-quasisolution of problem f!J. If there 
exists some space in which the family of all K-quasisolutions for K E R is relatively 
compact, we can obtain a generalized solution of problem f!J as the limit of a 
sequence of quasisolutions {um} corresponding to constants {Km}, Km - 00. The 
following theorem shows that the solvability of problem f!J, as formulated, is a 
consequence of an apriori bound in Co. l(n) for quasisolutions. 

Theorem 11.11. Let u be a K-quasisolution of problem f!J such that 

(11.22) 

Then, ifF E C 1(0 X R x R") is jointly convex with respect to z and p, the function u 
is also a solution of problem f!J. 

Proof Let v E ct. Then by (11.22) we have 

w=u+e(v-u) E rcK 
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for some e > O. Since u solves f!jJ K' we have 

f F(x, u, Du) dx~ f F(x, w, Dw) dx, 
o 0 

but, as w = (I - e)u + wand F is convex in (z, p), 

f F(x, w, Dw) dx~(l-e) f F(x, u, Du) dx+e f F(x, v, Dv) dx. 
o 0 0 

Consequen tJy 

f F(x, u, Du) dx ~ f F(x, v, Dv) dx. 0 
o 0 

The combination of Theorems 11.10 and 11.11 can be viewed as analogous to 
Theorems 11.4 and 11.8. It is practicable to carry out the required estimation of 
quasisolutions in three steps corresponding to steps (i), (ii) and (iii) of the existence 
procedure described in Section 11.3. Namely: 

(i), Estimation of sup lui; 
o 

(ii)' Using (i)" estimation of 

1'( ) lu(x) - u( y)1 
u = sup ; 

HO,ye~O Ix-yl 

(iii)' Using (ii)" estimation of 

l(u) = sup lu(x) - u( Y)I. 
x,yeO Ix-YI 

It turns out that many of our estimates in Chapters 10, 15 and 16, (in particular the 
comparison principle, Theorem 10.7), can be adapted to hold for quasisolutions of 
variational problems, thereby facilitating the above steps. Furthermore, under 
appropriate hypotheses on Q and aQ, we can obtain by regularity considerations 
classical solutions of the Dirichlet problem Qu = 0, u = cp on aQ. 

We note here also that the methods described above can be extended to the class 
of divergence structure operators using the theory of monotone operators and also 
to encompass obstacle problems. In these situations the solvability of problem 
f!jJK is generalized to that of a variational inequality. The reader is referred to the 
works [BW 3], [HS], [LL], [LST], [PAl, [WL], [KST] for further information. 
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Notes 

The Schauder fixed point theorem, Theorem 11.1, was established in ESC 1] and 
applied by Schauder to nonlinear equations in ESC 3]. Theorems 11.3 and 11.6 
are special cases of the Leray-Schauder theorem [LS]. Our proofs of these results 
follow respectively those of Schaefer [SH] and Browder [BW 2]. The application 
to the Dirichlet problem, Theorem 11.5, is adapted from Gilbarg [GL 2]. For 
Equation (11.7) Morrey ([MY 5] p. 98) proves Theorem 11.5 assuming only the 
bounded slope condition, without the regularity hypotheses on fl and qJ in Theorem 
11.4. 

In the first edition of this work we proved the Brouwer fixed point theorem 
following [OS]. In recent years many elegant and simple proofs have appeared in 
the literature. 



Chapter 12 

Equations in Two Variables 

The theory of quasilinear elliptic equations in two dimensions is in many respects 
simpler and in some respects more general than that in higher dimensions. This 
chapter is concerned with aspects of the theory that are specifically two-dimensional 
in character, although the basic results on quasilinear equations can be extended to 
higher dimensions by other methods. As will be seen, the special features of this 
theory are founded on strong apriori estimates that are valid for general linear 
equations in two variables. 

12.1. Quasiconformal Mappings 

Various function theoretic concepts and methods playa special role in the theory 
of elliptic equations in two variables; (see [CH], for example). Here we shall be 
concerned mainly with apriori estimates arising from the theory of quasiconformal 
mappings. A continuously differentiable mapping p=p(x, y), q=q(x, y) from a 
domain Q in the z=(x, y) plane to the w=(p, q) plane is quasiconformal, or K
quasiconformal, in Q iffor some constant K>O we have 

for all (x, Y) E Q. Although it suffices for the present purposes that p and q are in 
C 1(D), the results developed in this section will apply as well to continuous p, q in 
WI1~/, that is, to continuous p, q that have locally square integrable weak derivatives. 

When K< I, (12.1) is seen to imply that p and q are constant and we shall 
therefore assume K~ I. For K = I, the mapping w(z) = p(z) + iq(z) defines an 
analytic function of z. When K~ I, the inequality (12.1) has the geometric meaning 
that at points of non-vanishing Jacobian the mapping between the z and w planes 
preserves orientation and takes infinitesimal circles into infinitesimal ellipses of 
uniformly bounded eccentricity, in which the ratio of minor to major axis is 
bounded below by cc= K _(K 2 _1)1/2 >0. This remark can be verified by direct 
calculation. 

It will also be of interest to consider the more general class of mappings (x, y) -
(p, q) defined by the inequality 
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where K, K' are constants, with K~ I, K'~O. Although the geometric meaning 
is no longer the same, we shall refer to the mappings obeying (12.2) as 
(K. K')-quasiconformal. In the subsequent development it will be seen that 
mappings satisfying (12.1) and (12.2) arise naturally from elliptic equations in 
two variables, with p and - q representing the first derivatives of the solution. 

The object of this section is the derivation of apriori interior Holder estimates 
for (K, K' )-quasiconformal mappings. The main result will be the consequence of 
lemmas concerning the Dirichlet integral 

of a (K, K' )-quasiconformal mapping w taken over disks Br(z). When there is no 
ambiguity, we shall write 1)(r) for 1)(r; z) and Br for Br(z). 

Lemma 12.1. Let w = p + iq be (K, K' )-quasiconformal in a disk BR = BR(zo), 
satisfying (12.2) with K> I, K'~O, and suppose Ipi ~ Min BR • Thenfor all r~ R/2, 

(12.4) 1)(r)=ffIDWI2dXdY~C(~r%, cx=K_(K2_1)1/2, 
B, 

where C= C1(K)(M 2 + K'R2)./f K' =0, the conclusion remains validfor K= 1. 

Proof We first establish an estimate for the Dirichlet integral in the disk of radius 
R/2. From (12.2) we have in any concentric disk Br c BR 

(12.5) 1)(r) = f flDwl2 dx dy~ 2K f f~~:: ;; dx dy+ K'nr2 
Br Br 

where s denotes arc length along the circle Cr = aB r described in the counter

clockwise direction. Using the fact that 1)'(r) = flDwl2 ds, we observe 
c, 

oq ( )1/2 
(12.6) f p os ds~ f p2 ds fl Dql2 ds 

C,. c,. c,. 
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Inserting this into (12.5), and replacing r by R in the second member on the right, 
we obtain 

where k\ =1tR2K', k2 =81tM2K2. Now either 1)(R/2)~k\, in which case we have 
the desired estimate; or if not, then 1)(r»k\ for some r=ro<R/2 and hence 
for all larger r. The differential inequality (12.7) can then be integrated in 
r 0 < r \ ~ r ~ r 2 < R to yield 

Taking r \ = R/2, r 2 = R, we obtain 

We note that the derivation of this estimate involved no restrictions on K, K' 
other than the non-negativity of K. We note also that it is not possible in general to 
obtain such an estimate in the full disk BR , as is shown by the set of analytic func
tion wn=zn, n= I, 2, ... , all of which satisfy Iwni ~ I in Izl ~ I, but 

f f IDwn l2 dx dy ~ 00 as n ~ 00; 

Izl < 1 

on the other hand. f JIDwl dx dy~C(t5)<cx., for any fixed 15>0. where 
Izl < 1-/J 

C(t5) is independent of n. 
We proceed now from the bound (12.8) on the Dirichlet integral in BR/2 to a 

growth estimate for 1)(r). From the inequalities, 

we obtain 

Hence. writing (12.2) in the form, 
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and substituting rJ.= K _(K 2 -I )1/2 (or, equivalently, K = (I + rJ.2)/2rJ.), we find 

2 I 2 2K' Iw I ~-Iw I +-_. 
x rJ.2 Y I _rJ.2 

Thus 

(12.9) 

Since (12.2) is invariant under rotation, this inequality remains valid if any direc
tional derivative Ws replaces "\. 

We shall apply (\2.9) to obtain a more precise estimation of f pqs ds in (12.5). 
c. 

Let p = p(r) denote the mean value of p over the circle Cr' Then 

(12.10) f f - I f[(p_p)2 ] pqs ds= (p-p)qs dS~2 r +rq; ds. 
~ ~ ~ 

We now make use of the Wirtinger inequality [HLP], which states 

2n 2n 

f [p(r, 0) - p]2 dO ~ f pi dO, 
D D 

that is, 

(\ 2.11) f(p_jj)2 ds~r2 f p; ds. 
Cr Cr 

(This result is easily proved by expanding p = p(r, 0) in a Fourier series in fl and 
applying Parseval's equality.) Inserting (\ 2.11) into (\ 2. 10), we see that 

f pqs ds~~ f(p;+q;) ds=~ flws l2 ds 
Cr Cr Cr 

and hence by (12.9), 
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Now substituting this inequality into (12.5), and again using the relation 

flDwl2 ds= !,'(r), 
Cr 

we arrive at the differential inequality. 

(12.12) 

This implies 

from which it follows by integration between rand r 0 

(12.13) 

Letting ro= R/2 and inserting the bound (12.8), we obtain the desired estimate 
(12.4), with C=max {C2(K), C3(K)}(M 2+K'R2), where 

C = 321l K2 
2 log 2 ' 

We observe finally that when K' =0 the arguments are unaffected by allowing 
K= I, and C reduces to C2Ml. 0 

The following calculus lemma of Morrey provides the essential step from an 
estimate of the growth of the Dirichlet integral to a Holder estimate on the function 
itself. 

Lemma 12.2. Let WE CI(m, and let Dc cU with dist (0, am> R. Suppose 
there are positit'e constants C, IX and R' such that 

!l(r; z)= f f IDwl2 dx dy~ Crl~ 
Br (:) 

for all disks Br(z) with center z E Q and radius r~ R' ~ R. Then for all Zl' Z2 E {j 
such thatlz2 - Z II ~ R', we have 

IW(Z2)-W(zl)1 ~2fi IZ2-Z11~. 
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This lemma is an immediate corollary of Theorem 7.19 for the case n = 2 after 
applying the Schwarz inequality. A proof of the lemma in the form stated above 
is given in [FSl 

The preceding lemmas are collected in the following apriori Holder estimate 
for (K, K')-quasiconformal mappings. 

Theorem 12.3. Let w be (K, K')-quasiconformal in a domain Q, with K> I, K'~O, 
and suppose Iwl~M. Let QccQ with dist(Q,oQ»d. Then for all ZI'Z2EQ, 

we have 

(12.14) 

where C=C1(K)(M+djK'). If K'=O, then C=C1(K)M and the conclusion is 
valid also for K = I. 

Proof Suppose first that IZ2 -zll~d/2. The conditions of Lemmas 12.1 and 
12.2 then apply with R=d and R' =d/2, so that we have 

where 

L= C(K)(M 2+K'd2)1/2 ~ C(K)(M +djK'). 

Iz Z I~ Iz Z I~ IW(Z2)-W(zl)I~2M~2M. 2~ 1 ~4M 2~ 1 

The theorem is therefore proved with C1(K)=max (4, C(K)). 0 

Remarks. (I) The exponent I:1.=K-(K2-1)1/2 is the best (i.e., the largest) for 
which Lemma 12.1 and Theorem 12.3 are true. This can be seen from the example 
of the K-quasiconformal mapping 1t'(z)=r«('i9, I:1.=K-(K2-1)1/2, which has 
precisely the Holder exponent 1:1. at z=O. The same results (for K~ I, K'~O) with 
a smaller exponent 1:1. can be obtained from a slightly more direct proof of Lemma 
12.1 starting with (12.5) and dispensing with (12.9); in this case the sharp form 
of the Wirtinger inequality (12.11) is not required (cf. [NIl]). 

(2) Counterexamples show that Lemma 12.1 and Theorem 12.3 are not true 
for the exponent 1:1.= K - (K 2 - I )1/2 when K = I and K' >0, that is, for 1:1.= I (see 
Problem 12.1). However, if a mapping satisfies (12.2) with K = I, it satisfies such 
an inequality with any larger value of K and the corresponding results in Lemma 
12.1 and Theorem 12.3 then apply with exponent 1:1. arbitrarily close to 1. 
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(3) If Q is bounded and can be covered by N disks of diameter d/2. one sees 
from the proof that Theorem 12.3 remains valid under the weaker hypothesis 
Ipl ~M. with the constant e in (12.14) now depending also on N and hence on the 
diameter of Q. 

(4) Global estimates. If w=p+iq is (K, K')-quasiconformal in a e l domain 
Q and WEe I(Q), then Theorem 12.3 can be strengthened to an apriori global 
Holder estimate for w. In particular. iflwl~ M and p=O on oQ, then w satisfies a 
global Holder condition with Holder coefficient and exponent depending only on 
K, K', M and Q. To outline the proof, let oQ be the union of a finite number of 
overlapping arcs each of which can be straightened by a suitable e I diffeomorphism 
(x. y) ---+ (~, f/) defined in the neighbourhood of the arc. The function w is quasi
conformal in the (~, f/) variables with constants K, K' depending on K. K' and Q. By 
reflection across f/=O, so that p(~, -f/)= -p(~.,,) and q(~. -f/)=q(~. f/) in the 
extended (~, f/) plane, the function p+ iq is seen to define a (K. K')-quasiconformal 
mapping to which the preceding interior estimates apply. Returning to the (x. y) 

plane, we thus obtain a Holder estimate for Ir valid in Q; that is 

where rx=rx(K, K', Q) and e=C(K, K', Q, M). If p=p on oQ, where PE el(Q) 
and I pk a ~ M', then by considering p - p in place of p, we see that w satisfies 
the same kind of global estimate, with rx and e now depending on K, K', M, M', 
andQ. 

12.2. Holder Gradient Estimates for Linear Equations 

The results of the preceding section will now be applied to obtain interior Holder 
estimates for the first derivatives of solutions of uniformly elliptic equations, 

(12.15) Lu=auxx + 2buxy +cuyy=j; 

where a. b, c, I are defined in a domain Q of the z = (x, y) plane. Let ). = ..1.(.:-). 
A = A(.:-) denote the eigenvalues of the coefficient matrix, so that 

(12.16) 

and assuming L is uniformly elliptic in Q, we have 

(12.17) 
A 
-~y 
A.'" 

for some constant y~ I. We suppose also that sup (III/A.) ~Jl < 00. Dividing (12.15) 
a 

by the minimum eigenvalue A., we may assume that A.= I and that (12.16) holds 
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with A. = I and A = y, while III ~ 1l. Let us make this assumption in the following. 

Setting 

p=u", q=u" 

we can write (12.15) as the system 

(12.18) 
a 2b I 
- p,,+- p,+q,=-, p,=q". 
c c c 

By formal differentiation, p is seen to be a solution (in the weak sense) of the uni
formly elliptic equation of divergence form, 

( a 2b I) - p,,+-P,-- +(p,),=O, 
c c c" 

and a similar equation holds for q; (see the proof of Theorem 11.5). The Holder 
estimates on p and q that are derived in this section can also be obtained from the 
methods developed in Chapter 8 for equations of divergence form. For n= 2 the 
details are not fundamentally different from those based on quasiconformal 
mappings presented here. 

Multiplying the left member of 02.18) by cp", we obtain 

and similarly 

Adding these inequalities and noting that 2~a+c= I +A~ I +y, we have 

(12.19) IDpl2 +IDqI2~(a+c)l+ I(p,,+q,) 

~ (l + y)l +1-(1 + Y)Il(lp,,1 + Iq,l>. 

Inserting the inequality, 

and fixing e= I (the particular choice of e<2 is inessential for our purposes), 
we obtain from (12.19). 

(12.20) 
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Hence w=p- iq (or q+ ip) defines a (K, K')-quasiconformal mapping, satisfying 
(12.2) with 

(12.21) K=I+/" 

By taking t: sufficiently small, the constant K can be made arbitrarily close to 
(l +/,)/2. 

If f =0, one obtains directly from (12.16) and (12.17) the inequality 

In this case the mapping w = p - iq is K-quasiconformal with the constant 
K=(l +/,)/2. An elementary but more careful calculation shows that the smallest 
quasiconformality constant does not exceed K=(/,+ 1/")')/2 (see Problem 12.3, 
also [TA I]). 

We now establish the basic estimate for solutions of (12.15) required for the 
ensuing nonlinear theory. We use the notation dz = dist (z, oD), dl. 2 = min (dz" dz ) 

and the interior norms and seminorms defined in (4.17) and (6.10); in particular, 

[ ]* _ dl + 2 IDu(Z2)-Du(zl)1 
U 1.2- sup 1.2 Iz -z 12 ' 

zl,z2eU 2 1 

IflA.I~2)=SUp d;lflA.l. 
zeU 

Theorem 12.4. Let u be a bounded C 2(D) solution of 

where L is uniformly elliptic, satisfying (12.16), (12.17) in a domain Q of R2. Then 
for some 0:=0:(/,»0, we have 

(12.22) 

The significant feature of this result is that the estimate (12.22) depends only 
on bounds on the coefficients and not on any regularity properties. This is in 
contrast with the Schauder estimates (Theorem 6.2) which depend as well on the 
Holder constants of the coefficients. The Holder estimates of Chapter 8 for diver
gence form equations in n variables (Theorem 8.24) are also independent of regu
larity properties of the coefficients, but those estimates concern the solution itself 
and not its derivatives. The validity of the analogue of Theorem 12.4 for n > 2 
remains in doubt. 

Proof of Theorem 12.4. Let zl' Z2 be any pair of points in Q, set 2d=d1,2 and 
defineQ' = {z E Q 1 dz > d}, Q" = {z E Q' 1 dist(z, oQ') >d}. We note thatz l , Z2 E Q". 
We now apply Theorem 12.3 with Q', Q" in place of Q, Q respectively and 
K= I +/', K'=[(l +/,) sup IflA.W/2. The inequality (12.14) for w=p- iq, stated 

U' 
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in terms of the gradient Du, becomes for tX=O + y) - (yl + 2y)I/2 

IDu(z ) - Du(z )1 
d~ 12 I~ 1 ~C(supIDul+dsuplfIAJ), (C=C(y», 

Z2 -Zl U' U' 

~~(S~P dzIDu(z)1 +s~,P dzlflAJ); 

hence 

which implies 

[u]i,o<;o' ~ C([u]i;o' + If IAI~)o', for any D' c cD. 

The interpolation inequality (6,8) for j=k= 1, /3=0, namely, 

(12.23) 

gIves 

Choosing s so that Cs=t, we obtain for an appropriate constant C=C(y) 

which gives the required result (12.22). 0 

From (12.22) and the interpolation inequality (12.23) follows the norm estimate 

(12.24) 

Global Estimates 

Theorem 12.4 can be extended to a C 1,~(Q) estimate under suitable smoothness 
hypotheses on the boundary data and the solution itself. For suppose, in addition 
to the hypotheses of Theorem 12,4, that u E C 2(D), where D is a C 2 domain, 
and that u=O on aD. Then we can assert a global bound: lull.~;u~C, where 
tX=tX(y, Q) and C= C(y, D, lul o' If IAlo). We outline the proof. As a normalization, 
we set v = ulO + I Dul 0)' so that v satisfies Lv = flO + IDul 0) and IDvl ~ I. Let the 
boundary curve aD be covered by a finite number of overlapping arcs, each of which 
can be straightened into a segment of tI = 0 by a suitable C 2 diffeomorphism 
(x, y) --+ (~, tI) defined in the neighborhood of the arc. As in the derivation of 
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(12.20), the mapping p=p(" '1), q=q(" '1), where p=v~, q= -v~, is (K, K')

quasiconformal in (" '1) with constants K=K(Y, Q), K'=K'(}" Q, If/Alo) (we 
recalllDvl:::; I). Also, p=O on '1=0. The same argument as in Remark 4 at the 
end of Section 12.1 shows that p and q, and hence Dv, satisfy a global Holder 
condition in Q, in which the Holder exponent IX depends only on y and Q, and the 
Holder coefficient depends also on If/),Io' Thus, 

and by interpolation (see Lemma 6.35), we obtain a bound 

If cP E e2 (Q) and U = cp on eQ, then by considering u - cp in place of u in the pre
ceding, and recalling that lulo can be estimated in terms of sup Icpl and If /).1 0 

oU 
(Theorem 3.7), we infer the apriori global bound 

It should be emphasized that this estimate is independent of any regularity 
properties of f and the coefficients of L. It is clear from the details that the depen
dence on Q can be stated in terms of its dimensions and the bounds on the first 
and second derivatives of the mapping, = ~(x, y), '1 = '1(x, y), that is, in terms of the 
e2 properties of eQ. 

Later in this chapter we make the following application of the above result. 
Let Q be a e2.fJ domain for some P>O and let f and the coefficients of L lie in 
eP(Q). Suppose u E e 2(Q) 11 eO(Q), cp E e2.P(Q), satisfy Lu= fin Q, u=cp on eQ. 

Then UE e l • 2 (Q) and lul l.2;U:::;e, where 1X=1X(y, Q) and e=C(y, Q, Icp12' I f/A.I 0)' 
We note that u is assumed only continuous on (lQ. The proof follows from the 
preceding paragraph by an approximation argument. Namely, if am' bm , cm' fm' m = 
I, 2, ... , are suitably chosen functions in ep(Q) converging to a, b, c, f, uniformly 
in compact subdomains of Q, the corresponding solutions um of the Dirichlet 
problems, Lmum=fm in Q, um=cp on eQ, are in e 2(Q) and (by the preceding) 
satisfy a uniform e 1.2(Q) bound lumll.2:::; e for some 1X and e independent of m. 
By the Schauder interior estimates and uniqueness, the sequence {um } converges 
to the given solution u of Lu= f It follows that u also satisfies the same e l • 2(Q) 
bound lull. 2:::; e, which was our assertion. 

12.3. The Dirichlet Problem for Uniformly Elliptic Equations 

In this section we prove existence by a procedure that is a variant of the one outlined 
in Chapter II. In the Dirichlet problem treated here the details are generally 
simpler than in later problems and some steps of the program in Chapter II can 
be omitted. 

We consider the Dirichlet problem for quasi linear elliptic equations of the 
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general fonn, 

(12.25) Qu=a(x, y, u, u,,' u")u,,,,+2b(x, y, u, U,,' u,,)u")1 

+c(x, y, U, u,,' u,,)u)I)I+ f(x, y, u, u,,' u)I)=O, 
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defined in a bounded domain a in the (x, y) plane. Concerning the operator a we 
shall assume: 

(i) The functions a=a(x, y, u, p, q), ... , f = f(x, y, u, p, q) are defined for all 
(x, y, u, p, q) in a x R x R2 and, in addition, a, b, c, f, e C-(a x R x R2) for some 
p e (0, I). 

(ii) The operator Q is unifonnly elliptic in a for bounded u; that is, the 
eigenvalues A=A(X, y, u, p, q), A = A(x, y, u, p, q) of the coefficient matrix satisfy 

(12.26) 1:s;;;~:s;;;y(lul) V(x,y,u,p,q)eaxRxR2, 

where y is non-decreasing. 
(iii) The function f satisfies the structure conditions, 

(12.27) 1{1:s;;; 1l(lul)(1 + Ipl + Iql) 

(12.28) { sign u:s;;;v(1 +Ipl +Iql) V(x, y, U, p, q) e a x R x R2, 

where Il is non-decreasing and v is a non-negative constant. These correspond to 
the conditions on lower order tenns in linear equations. Equations satisfying 
(12.28) are discussed in Chapter 10. 

We now establish the following existence theorem. 

Theorem 12.5. Let a be a domain in R2 satisfying an exterior sphere condition, 
and let cp be a continuous function on aa. Then if Q is an elliptic quasilinear operator 
satisfying conditions (i)-(iii), the Dirichlet problem 

(12.29) QU=O in a, u=cp on oa, 

Proof We first prove the theorem under the more restrictive hypothesis, 

(12.30) 

in place of (12.27). The argument is based on reduction to the Schauder fixed 
point theorem (Theorem 11.1). To define the mapping T appearing in the state
ment of that theorem, we make the following observation. Let v be any bounded 
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function with locally Holder continuous first derivatives in Q, and let a= a(x, y) = 
a(x, y, v, vx ' vy), ... , be the locally Holder continuous functions in Q obtained 
by inserting v for u in the coefficients of Q. Since Ifl/A. is bounded, it follows from 
Theorem 6.13 that the linear Dirichlet problem, 

(12.31) 

has a unique solution u E C 2(Q) n COO'll. We observe from Theorem 3.7 that 

lulo=sup lul~sup Icpl+C11l=Mo' C 1 =C1 (diam Q). 
n ~n 

Furthermore, if sup Ivl ~Mo and if we set yo=y(Mo)' we have from Theorem 12.4 
n 

(12.32) lult,,~c(lulo+ll(diam Q)2), IX=IX(yo), C=c(yo)' 

~ C(M 0 + Il(diam D)2) = K. 

We note especially that this estimate depends only on the bound M 0 of the function 
v used in defining the coefficients of equation (12.31). 

Let us introduce the Banach space 

where IX is the Holder exponent in (12.32). We can define a mapping T of the set, 

by letting u = Tv be the unique solution of the linear Dirichlet problem (12.31) for 
v E 6. By virtue of (12.32) and the bound lulo~Mo' we have u E 6 and hence 
T maps 6 into itself. Since 6 is convex and is closed in the Banach space 

we may conclude from the Schauder fixed point theorem (Corollary 12.2) that T 
has a fixed point, u = Tu, in 6 provided the mapping T is continuous in C ~ and the 
image T6 is precompact. This will provide a solution of the problem (12.29) under 
the hypothesis 02.30). 

To prove T6 is precompact in C~, we observe first that the set 6, and hence 
T6, is equicontinuous at each point of D. We claim that the functions of T6 are 
also equicontinuous at each point Zo E oD. For let w be the barrier function in the 
argument preceding Theorem 6.13. The function w, which depends only on the 
ellipticity modulus Yo (in equation (12.31» and the radius of the exterior disk at zO' 
has the property that for any e> 0 and a suitable constant k. independent of v E 6, 
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the solution u = Tv of (12.31) satisfies the inequality 

(12.33) 

Since w(z) -+ 0 as Z -+ zo' this implies the equicontinuity of the set T6 at Zoo The 
functions of T6 are therefore equicontinuous on Q. Since TS is a bounded equi
continuous set in C~·>. it is precompact in C~ (see Lemma 6.33). 

The continuity of Tin C ~ is proved in a similar way: Let v. vn E S, n = I, 2, ... , 
and assume Ivn-vlr -+ 0 as n -+ 00. Consider U= Tr and the sequence un= Tvn, 
n= 1,2, ... ; we wish to show lun-ulr -+ O. By the Schauder interior estimates 
and the Remark following Corollary 6.3, it follows that a suitable (renumbered) 
subsequence {urn} C {un) converges uniformly with its first and second derivatives 
in compact subsets ofQ to a solution u in Q of the limit equation (12.31) obtained 
by inserting v into the coefficients of Q. We claim that u(z) -+ <p(zo) for all Zo E iJQ 
and hence (by uniqueness) u = u = Tv. For by the same barrier argument as above 
we may assert (12.33) with urn replacing u, from which we obtain in the limit 
u(z) -+ <p(zo) as z -+ Zoo Thus u = u and we have TVm -> Tv on Q for the subsequence 
{vrn }. 

Since the sequence {Tvrn l is contained in T S, which is precompact in C~, a 
suitable subsequence of {Tvrn } converges in the C ~ norm to Tv. The same argument, 
repeated on arbitrary subsequences of {un}, shows that I TVn - Tvlr -+ 0 for the 
entire sequence. This establishes the continuity of Ton C ~ and, as already observed, 
we may conclude the existence of a fixed point, u = Tu, in S. 

The theorem is thus proved in the special case that III/A. is bounded on 
Q x \R x \R 2, in particular when/=O. We return now to the original hypothesis (iii). 
It will be convenient in the following to assume A.(x, y, u, p, q)= I in Q x \R X \R 2, 

which can always be achieved by dividing the functions a, b, c I by A.. In this case 
(12.27), (12.28) become 

(12.34) 

(12.35) 

(/1"';: tl(lul)( 1 + Ipi + Iql)· 

I sign u"';:v(l +Ipl +Iql), v=const. 

We now proceed by truncation of I to reduce the given problem (12.29) to the 
above case of bounded f Namely, let t/l N denote the function given by 

t/I (t)={t, Itl"';:N 
N Nsign t, Itl>N 

and define the truncation of Iby 

From (12.34) we have I/NI "';:tlN(1 +2N). Consider now the family of problems, 

(12.36 ) QNu=a(x, y, y, Du)uxx + 2b(x, y, u, Du)uXY + c(x, y, u, Du)uyy 

+ IN(X, y, u, Du)=O, 

u=<p on iJQ. 
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By virtue of (12.35) and Theorem 10.3, any solution u in this family is subject to the 
bound, independent of N, 

(12.37) sup lui ~sup Iq>l + C1(v, diam Q)= M. 
!1 an 

From the preceding treatment of problem (12.29) with bounded f the problem 
(12.36}-in which fN is bounded-is seen to have a solution UN E C ~'~(Q) n 
C 2.{J(Q) n CO(Q), ::x=::x(y), y=y(M). Furthermore, from Theorem 12.4 we infer 
the estimate, 

(12.38) [UN ]r.~~ C(luNlo + IfNI~), 

where C=C(y), fN= fN(X, y, UN' DUN)' By (12.34) and (12.37), this becomes 

The interpolation inequality (12.23), with Ce = t now yields the uniform bound, 
independent of N, 

(12.39) 

Applying the preceding estimate and the Schauder interior estimates (Corollary 
6.3) to the family of equations QNUN=O on compact subsets, we obtain a (re
numbered) subsequence {un} C {UN} that converges to a solution U of Qu=O in 
Q satisfying the estimate (12.39). 

It remains to show that u also satisfies the boundary condition U= cp and for 
this purpose we apply a barrier argument very similar to that given above. By virtue 
of (12.34) and (12.37), each Un is the solution of a linear equation, 

where a~ I(X, y) = a(x, y, Un' DUn)' ... , and where b~(x, y), fn(x, y) are bounded 
independently of n. At any point Zo E cQ the barrierargument preceding Theorem 
6.13 applies to this family of equations with the barrier function w in (6.45), which 
depends only on y, J1 and the radius of the exterior disk at =0' We therefore obtain 
for any e > 0 and a suitable constant k, independent of n the inequality 

Letting n -> 00, we infer the same inequality with U in place of un' and hence 
u(z) -> q>(zo) as z -> zoo This completes the proof of the theorem. 0 

Remarks. (I) The proof of the preceding theorem is based only on interior 
derivative estimates, thus allowing more general conditions on the coefficients and 
boundary data. With the use of global estimates, a simple modification of the proof 
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yieldsae2,P(D)solution when aaandcparein e 2 'P anda,b,c, IE eP(Dx R x R2); 
(cf. Problem 12.5). Under these same hypotheses the solution provided by Theorem 
12.5 must also lie in e2 ,P(D). To prove this assertion, we observe first that the 
equation Qu=O, after inserting u into the coefficients, has coefficients in eP(Q), 
while u E e 2,p(Q) n eO(D) and u= cp on aa, where cp E e 2 ,P(D). According to 
the results on global estimates for linear equations at the end of Section 12.2, the 
solution u lies in e 1, "( U) for some 0[. The coefficients of Qu are therefore in 
c·p(li). It follows from Theorem 6.14 and uniqueness that u E e 2 ,,,p(li) and hence 
the coefficients of Qu are in ep(D). We infer in the same way that u E e 2,p(D), as 
asserted. 

(2) Condition (12.28) was imposed to insure a uniform bound on the magnitude 
of all possible solutions of the Dirichlet problem for QNU=O. Whenever such a 
bound is known apriori, condition (12.28) may be omitted. 

(3) The linear growth condition (12.27) on III/A. was required to obtain the 
bound (12.39) by interpolation for [uJ! in terms of [u]t,. and lulo' Whenever an 
apriori bound on the gradient of solutions is known for the family of equations 
QNU=O, this growth condition is superfluous; (such examples will be discussed in 
Chapter 15). 

(4) The hypothesis that a satisfy an exterior sphere condition can be replaced 
by any other condition that guarantees the existence of a barrier for strictly elliptic 
linear equations Lu= f, where I and the coefficients of L are bounded. For 
example, it suffices that a satisfy an exterior cone condition (see Problem 6.3). 

12.4. Non-Unifonnly Elliptic Equations 

In our study of non-uniformly elliptic equations we shall see that, unlike the pre
ceding section in which the domain is essentially arbitrary, the solvability of the 
Dirichlet problem is in general closely connected with the geometry of the domain. 
This feature of non-uniformly elliptic problems has already been observed in the 
linear theory (Sect. 6.6). The results of the present section emphasize the important 
role of convexity of the domain in insuring solvability of the Dirichlet problem for 
general quasilinear elliptic equations of the form, 

(12.40) Qu=a(x, y, u, UX' uy)uxx +2b(x, y, u, UX' uy)UXy +c(x, u, y, u, uX' uy)uyy 
=0. 

Let a be a bounded domain in R2 and cp be a function defined on aa. The 
Dirichlet problem for equation (12.40) will be formulated in terms of the boundary 
curve 

r=(Oa, cp)= {(z, cp(z» E R31 z E aa}. 

We recall (as in Sect. 11.3) that rand cp satisfy a bounded slope condition (with 
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constant K) if for every point P = (zo, cp(zo» E r there are planes in ~3, 

passing through P such that: 

(12.41) 
(i) n;(z)~cp(z)~n;(z) Vz E aD; 

(ii) IDn;1 =la±(zo)1 ~K VZo E aD. 

Condition (i) states that for each P the curve r is bounded above and below on the 
cylinder aDx ~ by the planes u=n;(z) and u=n;(z), and coincides with them 
at P. Condition (ii) states that the slopes of the planes are uniformly bounded, 
independently of P, by the constant K. It is evident that the bounded slope con
dition implies the continuity of cpo 

We make the following remarks concerning the bounded slope condition. 

(1) Whatever the domain D, r lies in a plane (and satisfies a bounded slope 
condition) it and only if cp is the restriction of a linear function on aD. However, if 
r does not lie in a plane and satisfies a bounded slope condition, then Q must be 
convex. For we have from (12.41) 

and thus there is a supporting line (a + -a -). (z- zo) =0 at each Zo E aD, which 
implies the convexity of D. 

(2) Suppose aD is convex and r = (aD, cp) satisfies a bounded slope condition. 
Let Pj=(Zj' cp(Zj», i= 1,2, 3, be three distinct points on r. If ZI' Z2' Z3 are collinear 
then PI' P 2' P 3 are also collinear on r, for otherwise these points would determine 
a vertical plane, contradicting (12.41 ). Thus cp is linear on the straight segments ofD. 

(3) Closely related to and, in fact, equivalent to the bounded slope condition 
is the following three-point condition, which appears often in the literature on 
minimal surfaces and non-parametric variational problems in two independent 
variables. Let D be bounded and convex; then the curve r=(aD, cp) is said to 
satisfy a three-point condition with constant K if every set of three distinct points 
on r lies in a plane of slope ~ K. At the end of this section we prove the equivalence 
of the bounded slope and three-point conditions, with the same constant K. 

It follows from the three-point condition that the plane determined by any 
three non-collinear points of r must have slope ~ K. Thus, if D is strictly convex 
(that is, the open straight segment joining any two points of aD lies entirely in D), 
then the slope of every plane intersecting r in at least three points does not exceed K 
and, conversely, this stronger form of the three-point condition obviously implies 
that aD is strictly convex. 

(4) It is not difficult to show that if cp E c 2, aD E C 2 and the curvature. of aD 
is everywhere positive, then r=(aQ, cp) satisfies a bounded slope condition, with 
a constant depending on the minimum curvature of aD and bounds on the first 
and second derivatives of cp; (see [SC 3], [HA]). 
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The solution of the Dirichlet problem for (12.40) will require an apriori bound 
for the gradient which is provided by the following lemma. 

Lemma 12.6. Let a be a bounded domain in IR z, and let cp be afunction defined on 
aa satisfying a bounded slope condition with constant K. Suppose u E CZ(Q) n CO(Q) 
satisfies a linear elliptic equation, 

( 12.42) 

with u=cp on aa. Then 

(12.43) sup IDul~K 
u 

We emphasize that L is only required to be elliptic and that no other conditions 
are placed on the coefficients. It is of interest that the result is valid even more 
generally, for arbitrary saddle surfaces u=u(x, y) (see [RA], [NU]). 

Proof of Lemma 12.6. We observe first tha t if cp is the restriction of a linear function 
on aa, then by uniqueness (Theorem 3.3) the solution u coincides with this function 
in a and the conclusion (12.43) holds trivially. It follows from the remark (I) 
above that a may be assumed convex. 

From (12.42) and the ellipticity of L we have 

O~ au~x + 2buXX uxy + CU~y = c(u;y - UXXUyy )' 

o ~au~y + 2buxy uyy + CU;y = a(u;y - UXXUyy ). 

Accordingly, UxxUyy-U;y~O and the equality holds only at points where DZu=O. 
(We note that u=u(x, y) is a saddle surface.) Consider now any point zo= 
(xo, Yo) E a where uxx uyy - U~y < 0 and let uo(x, y) = Ax + By + C define the tangent 
plane n to the surface u=u(x, y) at (x o, Yo)' The function w=u-uo is a solution 
of 02.42) in a, and the set on which w=O divides a small disk about Zo into 
precisely four domains D I' ... , D 4 in which w is alternately positive and negative, 
say w>O in D 1 , D3 and w<O in Dz, D4. Let D'I ::::> D 1, D~ ::::> D3 be components of 
the set in a where w>O, and let D~ ::::> Dz, D~ ::::> D4 be similarly defined. Then 
each of the domains D;, ... , D~ has at least two boundary points on aa where 
IV = 0, for otherwise the weak maximum principle (Theorem 3.1) would imply w = 0 
in the domain. It follows that n intersects the boundary curve F=(aa, cp) in at 
least four points. From remark (3) above we infer that ifany three of these points 
are not collinear, then n has slope not exceeding K. On the other hand, if the points 
on ca where w=O form a collinear set E, then (by remark (2» cp and u are linear 
and identical with U o on the straight segment of ca containing E. This would imply 
w=O in one of the domains D;, which is a contradiction. Thus the slope of the 
tangent plane to the solution surface cannot exceed K at points where DZu #- O. 

Now consider the set S on which D2u=0. We may assume s#-a, for other
wise u(x, y) would be linear and the conclusion is trivial. If Zo E Sand Zo is the limit 
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of points where D2u #0, then by continuity the tangent plane at Zo must have 
inclination not in excess of K. The remaining possibility is that Zo is an interior 
point of S, in which case Zo is contained in an open component G of the set in 
which D2u=0. On G, we have that u is linear and that the tangent plane coincides 
with the surface u = u(x, y). Since any boundary point of G that is interior to 0 is 
the limit of points where D2u #0, we conclude IDul ~ K everywhere on G and in 
particular at ZOo This completes the proof. 0 

We are now in the position to establish the following existence theorem for 
equation (12.40), which extends Theorem 11.5 for the case n=2. 

Theorem 12.7. Let 0 be a bounded domain in R2 and assume that the equation, 

Qu=a(x, y, u, u", u,,)u,,,, + 2b(x, y, u, u,,' u")u,,,,+c(x, y, u, u,,' u")u",, 

=0, 

is elliptic in 0 with coefficients a, b, c E CP(D x R x R2) for some p E (0, 1). Let qJ 

be a function defined on aD satisfying a bounded slope condition with constant K. 
Then the Dirichlet problem 

Qu=o in 0, u=q> on aD 

has a solution u E C2.P(Q) n CO(.Q), with sup IDul ~ K. 
u 

Proof It suffices to assume 0 is convex, since otherwise q> is the restriction of a 
linear function and the result is trivial. We divide the coefficients a, b, c by the 
maximum eigenvalue A =A(x, y, u, p, q) and denote again by Qu=O the equation 
thus obtained. The operator Q now has maximum eigenvalue I, but the minimum 
eigenvalue A may approach zero in 0 x R X R2. We consider the family of equations 

(12.44) Q.U=QU+8 Au=O, 8>0, 

with the boundary condition U=q> on aD. For each 8 this equation is uniformly 
elliptic and Theorem 12.5 asserts the existence of a solution u. E C 2,p(D) n C°(D) 
such that u. = q> on aD. (Only the first part of the proof of Theorem 12.5 is needed 
here.) By Lemma 12.6, the solution u. satisfies the uniform gradient estimate, 

(12.45) sup IDu.I~K, 
u 

independently of 8. From the maximum principle we also have lu.l~sup 1q>1. 
au 

As a consequence, in every subdomain 0' ceO, the linear equations, 

(12.46) 
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obtained by setting a.(x, y)=a(x, y, u., Du.), ... , have minimum eigenvalues, 
A.=A(X, y, Y., Du.) for (x, y) E Q', that are uniformly bounded below by a constant 
A(Q') > 0 depending only on Q'; the upper eigenvalues are of course bounded by 
2 for all £0 < I. Theorem 12.4 now asserts that in subsets Q" ceQ' the solutions 
of (12.46) with u = <p on aQ, in particular the solutions u., satisfy a uniform Holder 
bound for the gradient (independent of e): 

[Duld~"~C, IX = IX(A(Q'», 

where C=C(A(Q'), sup l<pl, dist (Q", aQ'». Accordingly, the coefficients a., b., c. 
00 

are locally Holder continuous with exponent IXP in Q' and have uniform bounds 
in C~II(n"). Since Q' and Q" are arbitrary it follows from Corollary 6.3 and the 
accompanying Remark that the family of solutions u. of (12.46) are equicontinuous 
with their first and second derivatives on compact subsets of Q and hence, by the 
usual diagonalization process, there is a sequence {u."} of the family {u.} con
verging in Q to a solution Uo of Qu=O as en -. O. The uniform gradient bound 
(12.45) guarantees that the convergence is uniform on n and hence Uo = <p on aQ. 
This completes the proof of the theorem. 0 

Remarks. (I) That some geometric condition on Q, such as convexity, must be 
imposed in general is indicated by classical counterexamples such as that of the 
minimal surface equation, 

(12.47) 

in the annulus, a < r < b, r = (x 2 + y2) 1 /2. If the boundary condition is <p = h 
(=const>O) on r=a, <p=O on r=b, and h is sufficiently small, the boundary 
value problem has the well-known catenoid solution. However, if h is sufficiently 
large, there is no solution taking on the prescribed boundary values. It will be seen 
in Chapter 14 that the Dirichlet problem for the minimal surface equation (12.47) 
is solvable for arbitrary C 2 boundary values if and only if Q is convex. 

(2) The smoothness hypotheses implicit in the boundary slope condition cannot 
be relaxed in general to allow continuous boundary values <po Counterexamples 
show that the Dirichlet problem need not have a solution for continuous boundary 
values even when the boundary curve is a circle and the coefficients of the equation 
are arbitrarily smooth; (see [FN 2]). Solvability for continuous boundary values 
will be discussed in Chapters 15 and 16. 

(3) The essential step in the proof of Theorem 12.7 is the reduction to the uni
formly elliptic case, which is made possible by the existence of an apriori global 
gradient bound (Lemma 12.6). Such gradient bounds can also be established under 
suitable structure conditions on the operator Q and geometric assumptions con
cerning the domain Q. They are discussed in Chapters 14 and 15. In the case of 
convex Q it is sometimes possible to replace the planes of the bounded slope 
condition by suitable super- and subfunctions with respect to Q and <p and to 
proceed with the argument in essentially the same way. Thus, if Q is convex and 
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the operator Q is such that A/A.~J.L{lul)(1 +p2+q2), the Dirichlet problem for 
equation (l2.40) is solvable for arbitrary cP E C 2 whether or not the bounded 
slope condition is satisfied (see Section 14.2). This includes, for example, the 
minimal surface equation (l2.47). 

(4) If Q, au and cp satisfy the additional smoothness hypotheses of Theorem 
11.4, that is, a, b, c E CP(llx R x R2), au E c2.P, cp E C 2,p(aU), then the solution 
provided by Theorem 12.7 lies in C 2,p(D). The argument proceeds essentially 
as in Remark I following Theorem 12.5, after the observation that the gradient 
bound IDul ~ K makes the equation Qu = 0 uniformly elliptic. 

Equivalence of the Bounded Slope and Three-Point Conditions 

Assume first that r=(aU, cp) satisfies a bounded slope condition with constant 
K, U being convex. Let zl' Z2' Z3 be three non-collinear points on au, and let 

be the corresponding upper and lower planes at the points Pj = (Zj' cp(Zj» E r 
satisfying (12.41). Also let 

u=7t(z)=a·z+b=a,(z-Zj)+CP(z;), i= 1,2,3, 

be the plane passing through PI' P2 , P3 . We wish to show lal~K. (If ZI' Z2' z)' 
and hence PI' P2 , P3 , are collinear, the plane u=7t{z) with slope~K can be deter
mined by continuity.) From (12.41) it follows 

(12.48) 

Since zl' Z2' Z3 are the vertices of a non-degenerate triangle and a is a vector in 
R2, we have for some i = I, 2, or 3, either 

a= ± L CiZj-Zj), Cj~O. 
j 

From (l2.48) we infer either 

or 

laI2~at'L cj(Zj-zj)=at ·a~Klal 
j 

laI2~aj-' L Cj(Zj-Zj) = aj- ·a~ Klal, 
j 

and hence lal ~ K. Thus the bounded slope condition implies the three-point condition 
with the same constant K. 
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Conversely, let r=(oQ, <p) satisfy the three-point condition with constant K 
over the convex domain Q. Let A = (z A' <p(Z A» be any point of r such that Z A is not 
an interior point of a straight segment of i!Q. There exists a sequence of triangles 
withverticesatnon-collinearpointsA, Bp C j E r, i= 1,2, ... ,suchthatBj , C j --+ A 
as i --+ 00 and the planes L1j determined by A, Bj , C j converge to a limiting plane ,1. 

It can be assumed that the segments A Bj have a limiting direction, which determines 
a straight line L through A lying in ,1 whose projection Lz on the Z plane is a 
supporting line of Q. Obviously L coincides with the tangent to r at A whenever 
the tangent exists. Let Q E r, Q ¢ L, and let n denote the plane determined by Q 
and L. The slope of n does not exceed K since the sequence of planes determined by 
A, Q and Bj have the same limit slope as n. Consider now the set of planes con
taining L and the points Q E r, Q ¢ L, and let these planes be defined by the linear 
functions u = 1tQ(z). In the z plane let H denote the half-plane on the side of L 
containing Q. If 1tQ(z) ~ Q'(z) for some Z E H, then the same inequality holds for 
all Z E H and, in particular, for all z eoQ. Thus, there are upper and lower planes 
at A defined by 

The planes u = 1t + (z) and u = 1t - (z) by the preceding discussion have slopes not 
exceeding K and lie respectively above and below r (over eQ). Hence they satisfy 
the bounded slope condition at A with constant K. It is clear that if A lies on a 
straight segment of r, then the line containing this segment can replace L in the 
above argument. Thus the three-point condition implies the bounded slope condition 
with the same constant K. 

Notes 

Holder estimates for quasiconformal mappings (Section 12.1) have been derived 
in various ways starting with Morrey [MY I]; (for references see [FS]). The 
development here is due to Finn and Serrin [FS], who derived the estimate (12.14) 
with its optimal Holder exponent and, when K' =0 in (12.2), also obtained this 
result with a Holder coefficient CM in which C is an absolute constant. 

The basic C I. ~ Holder estimates for solutions oflinear equations in Section 12.2 
are due to Morrey [MY I] and, in simpler form, to Nirenberg [NIl]. The presen
tation here is a variant of the latter, but follows Morrey in using growth estimates 
for the Dirichlet integral. The idea of applying these apriori C I.~ estimates for 
linear equations to the Dirichlet problem for the quasilinear equation (12.40) 
appears in [MY 1], which contains a flaw, however. The idea was carried to 
completion and simplified in the details by Nirenberg who applied the Schauder 
fixed point theorem in arriving at the general existence theorem described below. 
This approach is the basis for the development in Sections 12.3 and 12.4. 

Until the late 1950's the theory of the Dirichlet problem for nonlinear elliptic 
equations was confined largely to the case of two independent variables. The 
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pioneering work of Bernstein [BE 1-4J, which was somewhat restrictive in its 
hypotheses, was extended by Lerayand Schauder [SC 3J, [LSJ, who obtained 
solutions of the Dirichlet problem for (12.40) under the assumption of C 2 .fI 

coefficients and sufficiently smooth boundary data by using methods based (as in 
Bernstein's work) on apriori estimates of the second derivatives of solutions. These 
results were improved and simplified by the above contributions of Morrey and 
Nirenberg, the latter proving that if (12.40) is elliptic in Q with coefficients in 
C fI( U x jR X jR2), where aQ is a C 2. fI uniformly convex curve, and qJ E C 2. fI( 8D), 
then the Dirichlet problem for (12.40) has a solution in C 2 .fI(U); (if qJ E c1.1(aQ) 
then a solution exists in C 2 .fI(Q) n COOl». Theorem 12.7 extends this result by 
weakening the hypotheses on the coefficients and on the boundary data by requiring 
the latter to satisfy only a bounded slope condition, without additional regularity 
assumptions. The solution thus obtained also lies in C 2 .fI(Q) when the hypotheses 
are the same as in Nirenberg's theorem (see Remark 4 after Theorem 12.7). The 
proof of Theorem 12.7 depends only on apriori interior CI.~ estimates for linear 
equations (Theorem 12.4). That such estimates suffice for an existence proof was 
observed already by Nirenberg ([NI IJ, p. 146). 

Concerning the Dirichlet problem for the uniformly elliptic equation (12.25), 
we mention the contributions of Bers and Nirenberg [BNJ, Ladyzhenskaya and 
Ural'tseva [LU 4J and von Wahl [WA]. In [BNJ, existence results-for both the 
Dirichlet and Neumann problems-are obtained in the context of W 2 • 2 solutions 
(which are also in C2.~ if the coefficients in (12.25) are in CII). It assumes a linear 
growth condition for f(x, y, u, p, q) analogous to (12.27), and the methods of 
proof in [BNJ and Theorem 12.5 are similar in being based on C I .II estimates 
for linear equations and the Schauder fixed point theorem. Both [BNJ and Theorem 
12.5 make no apriori assumptions concerning the solutions. However, if a uniform 
bound on sup lui is assumed for all solutions u of (12.29) under the following 

a 
hypotheses: a, b, c, f E CfI(ll x jR x jR2) in (12.25), aQ E C 2.fI, qJ E C 2.fI(Q), and 
If/ll::s;; C(I +p2 +q2) (weakening the condition (12.27», then [WA] establishes an 
apriori c l .lI(m bound on solutions of the Dirichlet problem, thereby extending a 
similar result in [LU 4]. (This estimate does not follow from the methods of the 
present chapter without an apriori gradient bound.) Existence of a C 2.fI(ll) 
solution of the Dirichlet problem (12.29) can now be obtained by application of 
the Leray-Schauder fixed point theorem. 

The proof of the gradient bound in Lemma 12.6 is suggested by the intro
ductory remarks of Finn in [FN 2J. It is usually inferred from a theorem of Rad6 
[RAJ. which asserts that if u=u(x, y) is a saddle surface over a convex domain Q 
and u is continuous on n with boundary values satisfying a three-point condition 
with constant K, then u satisfies a Lipschitz condition with constant Kin Q. In 
this theorem u(x, y) is considered to define a saddle surface ifit is continuous and 
the function u(x, y) - (ax + by + c) satisfies the weak maximum-minimum principle 
for all constants a, b, c. In particular, this will be the case if u(x, y) satisfies (12.42) 
or represents a surface having non-positive Gaussian curvature. An elementary 
(but still not simple) proof is due to von Neumann [NU]. Hartman and Niren
berg [HNJ, [NI 4J have extended the result to higher dimensions. 
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With regard to the bounded slope condition, Hartman [HA] analyzes the 
relation between the regularity properties of cp and au when the function cp 
satisfies a bounded slope condition over the boundary au of a bounded convex 
domain U in R". In the process he establi!\hes the equivalence of the bounded slope 
and (n + I )-point conditions for n ~ 2; however, the relation between the constants 
in the two conditions remains unclear for n> 2. Among the results we mention the 
following. (i) If au E C 1. ".O:SO; (X:SO; I, and cp satisfies a bounded slope condition over 
au. then cp E C1,~(aU). (ii) If au E cl. 1 and is uniformly convex. then cp satisfies 
a bounded slope condition over au if and only if cp E C 1, 1. The latter result follows 
from (i) and the fact that ifU is anJ' uniformly convex domain and cp is the restriction 
to au of a C 1, 1 function. then cp satisfies a bounded slope condition over au, 

Problems 

12.1. Show that the function w(z) = z log Izl is (K, K)-quasiconformal with 
K= I, K'>O and does not satisfy (12.14) with the exponent (X= l. 

12.2. Prove Theorem 12.3 for quasiconformal mappings satisfying (12.2) in 
which p, q are continuous and lie in WI~~ 2 (cf. [FS]). 

12.3. Let Lu = auxx + 2bu"y + CUyy be uniformly elliptic in a domain U with 
y=sup (AlA.), where A. = A.(x, y) and A=A(x, y) are the minimum and maximum 

u 
eigenvalues of the coefficient matrix. If Lu = 0, show that p - iq = u" - iUy is K-
quasiconformal in U for all K~t(}' + I/y). [It suffices to show that 

where the supremum is taken over all r, s, t satisfying ar+2bs+ct=0 for fixed 
(x, y) E U.] Hence infer that when I =0 Theorem 12.4 holds for any Holder 
exponent (X:SO; Ify (cf. [TA 1] for 1#0). 

12.4. In Theorem 12.4. assume II A. E U(U), p> 2. If U' c c U, prove that for 
some (X E (0, 1) we have 

lull.~; u,:so; C(lulo;u+ !If/A.II LPfm)' 

where C=C(y,P. dist (U'. aU» and (X=(X(')',p). (Either UE C 2(U) or UE W2,2(U) 
may be assumed.) 

12.S. In Theorem 12.5.assumeUEC2,II,CPE C2,1I(Q)anda,b,c,fECII(D x R x R2). 
By applying the C 1.~(.Q) estimates discussed after Theorem 12.4, modify the proof 
of Theorem 12.5 to show that problem (12.29) has a solution in C 2 ,1I(Q). [Replace 
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c! and C!·~ by ct.~(.Q) and define the set 6 and the operator T accordingly. 
Use Theorem 6.14 in place of Theorem 6.13, and global in place of interior 
Schauder estimates. A simpler proof is obtained by considering the family of 
equations, u=aTu, a E [0,1], corresponding to the Dirichlet problems 

where a = a(x, y, u, ux ' uy)' etc. Show that the solutions are uniformly bounded in 
ct'~(m and apply Theorem 11.3]. 

12.6. Assume the operator Q in equation (12.40) is uniformly elliptic on bounded 
subsets of Q x IR X 1R2. Prove Theorem 12.7 without the use of Theorem 12.5 
by replacing the set 6 in Theorem 12.5 with 

6'={VE c~·~ IlvIL~K', IDvl~K} 

where K is the constant of the bounded slope condition and K' is a constant 
determined as in (12.32). 



Chapter 13 

Holder Estimates for the Gradient 

In this chapter we derive interior and global Holder estimates for the derivatives 
of solutions of quasilinear elliptic equations of the form 

(13.1) Qu=aij(x. u. Du)Dip+b(x. II. Du)=O 

in a bounded domain D. From the global results we shall see that Step IV of the 
existence procedure described in Chapter II can be carried out if. in addition 
to the hypotheses of Theorem 11.4. we assume that either the coefficients aij are in 
C1(Q x R x R") or that Q is of divergence form or that n= 2. The estimates of this 
chapter will be established through a reduction to the results of Chapter 8. in 
particular to Theorems 8.18.8.24.8.26 and 8.29. 

13.1. Equations of Divergence Form 

Let us suppose now that Q is equivalent to an elliptic operator of the form. 

(13.2) Qu=div A(x, u, Du)+ B(x, u, Du), 

where the vector function A E C 1(D x R x R") and BE CO(D x R x R"). Then if 
u E C1(Q) satisfies Qu=O in D, we have 

f {A(x. u, Du)·DC-B(x. u, DuK} dx=O 'riC E C~(D). 
n 

Fixing k, 1 ~ k ~ n, replacing C by D.C. and integrating by parts. we then obtain 

f {(DpjAiDj.U+b.Ai)DiC + BD.O dx=O 'riC E q(Q), 

n 

where b. is the differential operator defined by 
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and the arguments of DpjA i, c5kAi and B are x, u(x), Du(x). Hence, writing 

aii(x) = D pJAi(x, u(x), Du(x» 

flex) = c5kAi(x, u(x), Du(x» + c5!B(x, u(x), Du(x» 

where [c5D is the identity matrix, we see that the derivative w = Dku satisfies 

( 13.3) f (aii(x)Djw + f!(x»Di( dx = 0 
u 

that is, w is a generalized solution of the linear elliptic equation 

By replacing D if necessary by a strictly contained subdomain we can assume that 
L is strictly elliptic in D and that the coefficients aij, f~ are bounded, that is the 
hypotheses of Theorems 8.22 and 8.24 are satisfied. Accordingly, choosing 
l K, AK, ilK such that 

O<lK ~l(x, z, p), 

(13.4) AK~IDpjAi(x. z,p)l. 

ilK ~ lc5jA i(x, z, p)1 + IB(x. z;p)l. 

for all xED. Izi + Ipi ~ K, i,j= 1, ... , n, we obtain the following interior estimate. 

Theorem 13.1. Let u E C2(Q) satisfy Qu=O in D where Q is elliptic in D and is 
of divergenceform (13.2) with A E CI(D x ~ X ~n), B E CO(D x ~ x ~n). Thenfor any 
D' c cD we have the estimate 

(13.5) [Du].z;u' ~ cr" 

where 

c = C(n, K, AKllK , llK.llK , diam D), 

K = I u k u = sup ( I u I + I Du I), 
u 

In order to extend Theorem 13.1 to a global Holder estimate in D we assume 
that Q is elliptic in 0 with A E Cl(n x ~ X ~n), BE CO(O x ~ x ~n). that oD E C2 

and that u = (() on aD where (() E C2(O). By replacing u with u- (() we can assume 
without loss of generality that u=o on aD. Since aD E C2, there exists for each 
Xo E aD a ball B= B(xo) and a one-to-one mapping", from B onto an open set 
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Dc IRn such that 

';(B n U)c IR~ = {x E IR" I xn>O}, 
';(B n aU) c olR~ and 1/1 E C2(B), 1/1 - 1 E C2(D). 

Writingy=';(x), v(y)=u o .;-l(y), B+=BnU, D+=I/I(B+), we have D",v=O 
on oD+ n olR~, k= I, ... , n-I, and that the equation Qu=O in B+ is equivalent 
to the equation 

(13.6) Qv=D",.A:i(x, u, Du)+ 8(x, u, Du)=O, X=';-l(y), 

in D+ where the functions A and B are given by 

The derivatives w=DJlkv, k= I, ... , n, will consequently be generalized solutions 
in D+ of the linear elliptic equations 

where 

., oy. oy. alJ( .)=_I:::....J. D A', 
} ax aX P. , . 

p(y)= °Yi ax. (~D A'D u+15 A')+l5i B 
l ax oy ox. ox Pj "1. l 

, l J • 

+[~ (OYi)_I5~ ~ (OYj)] A', 
OYl ox, oYj ax, 

the arguments of D P.A', I5.A', A' and B being x = 1/1- l(y), u(x) = v(y) and Du(x) = 
Du(,r l(y». By replacing B(xo) if necessary by a smaller concentric ball, we can 
then assume that the Jacobian matrix [D';] = [iJYdiJXj] is bounded from above and 
below in B by positive constants, and consequently the operator L is strictly 
elliptic in D+ with bounded coefficients ilJ,fr By applying Theorem 8.29, we thus 
have for any D'c cD 

(13.7) [DJlkV]~;D' "D+ ~C, k= I, ... , n-I, 

where C=C(n, K, AKiAK' Jl.KiAK, U, d), K=luit:n' d=dist (D' n D+, iJD) and 
a=rx(n, AKiAK' 0»0. 

The remaining derivative D"nv can be estimated as follows. Let Yo E D+ n D', 
R~di3, B2R =B2R(yo)' "E CMB2R ), and let c be a constant such that c=w(Yo) 
if B2R cD+, c=O if B2R n iJlR"+ #e/>. The function C=,,2(W-C) then belongs to 
W~· 2(D+) for W= Dykv, k = I, ... , n -1. By substitution into the integral identity 
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(13.3) with {l= D+, we then have 

so that by the Schwarz inequality (7.6) and the ellipticity of L, we obtain 

where C=C(n, K, AK/AK, IlK/AK' U). Now let us further require" to be such that 
o ~ " ~ 1,,, = 1 in BR = BR(yo) and ID"I ~ 2/R. We thus obtain 

flDwl2 dy~C R,,-2(R2+sup (W-C)2) 
BR ~R 

by (13.7), where C and (X depend on the same quantities as in (13.7). Therefore, 
since k= 1, ... , n-l, we have 

(13.8) fIDi})12 dy~ C R,,-2+2,. 
BR 

providedj#n. To proceed further we solve equation (13.6) for D""v, so that we 
can write 

for certain functions bii, b bounded in terms of Dt/I, K, AK/AK and ilK/Ax.' Hence by 
(13.8) we have 

f1D"iV12 dy~ C R"-2+2,,, i= 1, ... , n, 
BR 

so that using inequality (7.8) and Morrey's estimate, Theorem 7.19, we can 
conclude that the estimate (13.7) is also valid for k = n. Returning to the domain {l 
by means of the mapping", - 1, we thus have 

(13.9) [DU]",;B' "a~C 
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for any concentric ball B' c c B, where C= C(n, K, AKIAK' Jl.KIAK' a, B'). Finally, 
by choosing a finite number of points Xo e ca and balls B' covering aa, we obtain 
the following global Holder estimate from (13.5) and (13.9). 

Theorem 13.2. Let u e C2(Q) satisfy Qu=O in a where Q is elliptic in Q and is 
of divergence form (13.2) with A e C1(Q x R x R"), Be CO(Q x R x R"). Then if 
oa e C2 and u=cp on oa, where cp e C2(Q), we have the estimate 

(13.10) [Du],,;u:::;;C 

where 

C=C(n, K, AKIA.K, Jl.KIA.K, a, cP), 

K=luI1;u, cP=lcpI2;U and 1X=IX(n, AKIAK' Q»O. 

An inspection of the proofs of Theorems 13.1 and 13.2 shows that the estimates 
(13.5) and (13.10) continue to hold if we only assume u e CO. 1(U) n W 2• 2(Q), 
andcpe W 2,q(Q)forsomeq > n.lnthisgeneralitywenowmusttakecP = Ilcpllw2,o(Uj' 
and IX will depend as well on q. 

13.2. Equations in Two Variables 

If u e C2(Q) satisfies the elliptic equation (13.1) in acR2, then the derivatives 
WI = DIu, W 2 = D 2U are generalized solutions in a of the linear elliptic equations 

(13.11) 

Consequently the methods for equations of divergence form also apply here. 
Accordingly, if AK, AK and Jl.K satisfy 

(13.12) 

O<AK <A(X, z,p), 

AK ~ laii(x, z, p)l, 

Jl.K ~Ib(x, z,p)l, 

for all x e a, Izi + Ipi :::;; K, i, j = 1, 2, we have the following estimates. 

Theorem 13.3. Let u e C2( Q) satisfy Qu = 0 in a c R2, where Q is elliptic in a and 
the coefficients di , be CO(a x R x R2). Thenfor any a' c ca, we have 

(13.13) 
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where 

C=C(K, A~jAt.., J1.t../At.., diam Q), 

K=luI1;o' d=dist (Q', am and a=a(AK/At..»O. 

Theorem 13.4. Let u E C2(Q) satisfy Qu=O in Qc 1R2 where Q is elliptic in Q and 
the coefficients di, bE CO(Q x IR x 1R2). Then if aQ E C2 , Q E C2(Q) and u = <fJ on 
aQ, we have the estimate 

(13.14) 

where 

C=C(K, AK/AK, J1.K/AK' Q, <1», 

K=luI1;o' <1>=1<fJ1 2 ;o and a=a(AK/AK, Q»O. 

Note that we have given an alternative derivation of Theorem 13.3 in Chapter 
12 using the method of quasiconformal mappings. We note also that in the case of 
two variables the proof of the Holder estimate for linear divergence form equations 
is simpler than for more variables (see Problem 8.5). The remark following Theorem 
13.2 of course applies as well to Theorems 13.3 and 13.4. 

13.3. Equations of General Form; the Interior Estimate 

We shall treat elliptic equations of the general form (13.1) by showing that certain 
combinations of the derivatives of solutions are generalized subsolutions of linear 
elliptic equations of divergence form. The desired Holder estimates are then 
obtained through application of the weak Harnack inequalities, Theorems 8.18 
and 8.26. 

Let us suppose that the coefficients d j and b of Q, are respectively in 
C1(Q x IR x IRn) and CO(Q x IR x IRn). Let Qu =0 in Q and assume initially that 
u E C3(Q). By differentiation with respect to xk , k = I, ... , n, we obtain 

(13.15) dj(x, u, Du)Dkip+Dp,aij(x, u, Du)D,kU DiP 

+bkaij(x, u, Du)Dip+Dkb(x, u, Du)=O 

where bk is the differential operator defined by 

The equation (13.15) can be written in the following divergence form 

(13.16) 
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Let us now write v = IDuI 2 , multiply equation (13.16) by D"u and sum the resulting 
equations from k= I to n. We then obtain 

(13.17) 

For Y E Rand r = I, ... , n, we next define functions 

(13.18) w=w,=yD,u+v, 

and by combining (13.16) and (13.17) obtain the equation, 

(13.19) 

Setting 

- 2aij D"iUD"P + Di(aij Djw + (2Diu + ybi')b) 
+(D aij -D ail)D .. uD w+ [(2D u+yb"')b aij -2Mij)]D.,u-b.aijD.w 

PI P j I) I " " I) I ) 

=0. 

aij(x)=aij(x, u(x), Du(x», 

a;j(x)=(Dplaij-Dp/l)(x, u(x), Du(x», 

f!(x) = (2Diu(x) + ybi')b(x, (i(x), Du(x», 

bij(x) = [(2D"u(x)+ ybkr)b"uij - 2 bijb] (x, u(x), Du(x», 

ci(x) = bpij(X, u(x), Du(x», 

we write the equation (13.19) in its integral form 

(13.20) 
f{(aiiDjw+ f~)Di' + (2aiiD"iuD"p-a;iDipDlw +ciDiW-biiDi}lK} dx 
u 

=0 

for all, E C~(U). We claim now that the integral identity (13.20) continues to be 
valid if we only assume that u E C2(U). To see this, we let {u",} c C3(U) approach u 
in the sense of C2(U), that is {Dllu",}, converges uniformly to Dllu on compact 
subsets of a for all 1111 ~ 2. Since Qu = 0 in a, we have Qu", -+ 0 uniformly on com
pact subsets of a and hence letting m - 'X) in the integral identity for Um corres
ponding to (13.20), we obtain (13.20). We note that a similar approximation 
argument shows that in fact we need only assume u E CO· l(a) n W 2•2(!2). 

To proceed further, we need to remove the terms involving DiP from (13.20). 
Since Q is elliptic we have 

where A=A(X, u(x), Du(x». Using the Schwarz inequality, we then have from 
(13.20) 
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(13.21) 

~ f {P. +~ LId,iI2) IDwI2 +~ L (lcil2 + IbiiI2)} C dx 
n 

for all non-negative, E CMfl). The reduction to the linear theory is finally achieved 
by replacing C in (13.21) by C e2 ,xw where x= sup (1 +l -2 L laW). Setting 

iiii( x) = e2xw(,x) ,ii( x) 

p(x)=e2"w(,x) f~(x) 

n 

g(X)=I e2"w(,x) (X L If~12+ L Id1 2 + L Wi12) 

we thus obtain 

(13.22) f {(iiiiDiw+ P)DiC -gC} dx ~O 
n 

for all non-negative C E q(fl); that is, the function W satisfies the inequality 

(13.23) 

in the generalized sense. By replacing fl if necessary by a strictly contained sub
domain we can assume that the operator L is strictly elliptic in fl and that the 
coefficients iiii, P and g are bounded. 

Let us take y>O and write wr±= ±yDru+v. We now show that the validity of 
the inequality (13.23) for all sufficiently large y E III and r = 1, ... , n is sufficient for 
the derivation of Holder estimates for the derivatives Dru, r= 1, ... , n. For, by 
choosing y sufficiently large, we can ensure that the functions wr± behave in a 
certain sense the same as ± Dru. It turns out that a convenient choice of y is 
y = IOnM where M = sup IDul. For with this choice if 6 is an arbitrary subset of fl 
and r is chosen so that 

osc Dru~ osc DiU, ;= 1, ... , n, 
6 6 

it is readily seen that 

(13.24) 8n M osc Dru ~osc wr± ~ 12n M osc Dru. 
666 

Furthermore, writing w± = w; for brevity and setting W± = sup w±, we have 
6 



13.3. Equations of General Fonn; the Interior Estimate 327 

(13.25) inf L (W±-w±)~lOnM(supD,u-infD,u)+2infv-2supv 
5 +, - 5 S S 5 

~6n M osc D,u 
S 

~1 OSC I\'± 

S 

We are now in a convenient position to apply the weak Harnack inequality, 
Theorem 8.18. Let us take Z=B4R(y)cfl. The functions u= W± -w± will be 
non-negative supersolutions in Z of the equation 

Accordingly, choosing AK and Jl.K such that 

O<)'K<A(X, Z, p), 

(13,26) Jl.K~ luii(x, z, p)1 + IDPkdi(x. Z, p)1 + 1 Dzuij(x, z, p)1 
+ID.q.di(x, z, p)1 +Ib(x, z, p)l, 

for all x E fl, 1=1 +Ipl ~ K, i,j, k = I, ... , n, and settingp= I in Theorem 8.18, we 
obtain the estimates 

(13.27) 

where C= C(n, K, Jl.K/AK)' K=lull;u and u(R)= R+ R2, Using (13,25), we see that 
the inequality 

1 f 1 ( W±-w±) dx~- osc w± 
w (2R)" '" 4 ' 
"B2R BOR 

holds for either w+ or W-. Let us suppose it is true for w+. Then from (13.27) we 
have 

osc w+ ~C(W+ -sup w+ +u(R» 
B.R 

~C(osc w+ -osc w+ +u(R», 
BOR BR 

and consequently, writing w(R)=osc w+, we have 
BR 

w(R) ~ yw(4R) + u(R), 

where y= 1- C- 1 , C= C(n, K, Jl.K/AK)' 
We need now the following extension of Lemma 8.23. 
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Lemma 13.5. Let WI' ... , WN , WI' ... WN ~ 0 be non-decreasing functions on an 
interval (0, R o) such that for each R ~ Ro a function wr can be found satisfying the 
inequalities 

(13.28) 
wr(R)~bOWj(R), i= I, ... , N, and 

wr(bR)~ ywr(R) +a(R) 

where a is also non-decreasing, bo> 0 and 0 < 't', b < I. Then for any /l E (0, I) and 
R~ Ro' we have 

( 13.29) 

where C=C(N, bo' b, y) and r:t.=a.(N, bo, b, y, /l) are positive constants and 
wo= max wj(Ro)' 

j= l •...• N 

The proof of Lemma 13.5 follows by a simple modification of Lemma 8.23 and 
is therefore omitted. If we now let Bo = BRo(Y) be any ball contained in Q, it then 
follows by Lemma 13.5 with N = 2n, bo = 8nM, b = !, and /l = t, that for any 
R ~ Ro' i = I, ... , n 

(13.30) osc Dju~CR' 
BR(Y) 

where C=C(n, K, /lK/A.K, R o), r:t.=a.(n, K, /lK/A.K). Consequently we obtain the 
desired interior estimate asserted in the following theorem. 

Theorem 13.6. Let u E C2(Q) satisfy Qu=O in Q where Q is elliptic in Q and the 
coefficients di E Cl(Q x ~ X ~n), bE CO(Q x ~ x ~n). Thenforany Q' c. cQ we have 
the estimate 

(13.31) 

where C=C(n,K,/lKj)'K,diamQ), K=lull:n, d=dist (Q',oQ) and r:t.= 

r:t.(n, K, /lK/AK). 

13.4. Equations of General Form; the Boundary Estimate 

Let us suppose now that the operator Q is elliptic in Q and that the coefficients aii 

and b are respectively in CI(Q x ~ X ~n) and CO(Q x ~ x ~n). Let oQ E C2 and 
assume U=qJ on oQ where qJ E C2(Q). By replacing u by U-qJ, we can assume 
without loss of generality that u = 0 on cQ. Furthermore, if OIJ is an open subset of 
Q and x - y=I/1(x) defines a C 2 ('4/) coordinate transformation, we have for x E JI1 
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(13.32) _ ,,, aYi ~ Ii a2y" 
Qu-a (x, u, Du) ax" ax Dy,yp+a (x, u, Du) axjaxi Dyku 

+b(x, u, Du). 

Consequently the equation Qu=O in I¥/ is transformed into an equation Qv=O 
in "'(I¥/) where V=U 0 ",-1 and Q satisfies the same hypotheses as Q. It there
fore suffices to consider equation (13.1) in the neighborhood of a fiat boundary 
portion. Accordingly, let D be an open set in Rn such that D + = D n 0 c: R~ = 
{x E Rnlxn > O} and D n a(.tc: aR~ . We define functions v' and W by 

n- 1 

(13.33) V' = L IDiu1 2 , w=wr=yDru+v', r=I, .. . ,n-I, ~'ER. 
i= 1 

It is evident that w=O on D n 00 and that w satisfies equation (13.20) provided 
the summation over the index k is taken from 1 to n - 1. Under this restriction we 
then have 

(iiD"luD"p~).. L IDlp12. 
i*-n 

The missing derivative Dnnu is estimated by writing equation (13.1) in the form 
1 ~ .. 

(13.34) Dnnu= -lift ( L. a'JDIP+b). 
a (1')1 *- (n, n) 

Inserting (13.34) into (13.20) and proceeding as in the preceding section, we arrive 
at the integral inequality (13.22) with 0 replaced by D+ and X and g replaced 
respectively by 

and 

x= sup (1 +).. -2 L laW)(l +).. -2 L laiil2) 
a 

g=).. - 1 e2",,·(x L If~12 + L Icl12 + b2( 1 +).. - 2 L laW) 

.. + L Iblil2(l +)..-2 L Idi I2». 

By considering balls centered at Y E D n aD, applying the boundary weak Harnack 
inequality (Theorem 8.26) instead of the interior Harnack inequality (Theorem 
8.18) and following the proof of the preceding section, we obtain a boundary 
Holder estimate for the tangential derivatives of u. That is, for any ball Bo = 
BRo( y) c: D with center Y E D n aD, we have for any R ~ Ro 

(13.35) osc DiU~CR~, i=l, ... ,n-l, 
D + "BR(Y) 
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The passage from (13.35) to an estimate for the remaining derivative Dnu is 
similar to the corresponding step for divergence form equations in Section 13.1. 
Let D'ccD, d=dist(D'f1D+, aD), YED+f1D', R~d/3, B2R =B2R(y), 

,., E Q(B2R ), and let c be a constant such that c= inf w if B2R cD+, c=O if 
B1R 

B2R fI aQ#tjJ. The function (=,.,2(W-C)+ =,.,2 sup (w-c, 0) is non-negative and 
belongs to W~·2(D+) for w given by (13.33). By substitution into the integral 
inequality (13.22) with Q = D + , we then have 

where C=C(n, K, Il,,/A,,). Now let us further require,., to be such that o~,.,~ I, 
,., = I in B R = B R( y) and I D,.,I ~ 2/ R. We then obtain 

(13.36) f IDwl2 dx~ CRn - 2(R2+ sup (W-C)2), B; = {x E BR I w(x)~ c}, 
BR B'R 

B'R 

~CR"-2+2" by (13.30) and (13.35), 

where C=C(n, K, Il"/A,,, d) and cx=cx(n, K, Il,,/A,,). By taking ')1=0 and ')1= I in 
(13.36), we then have for B2R c D+ (in which case B; = BR = D+ fI BR) 

(13.37) 

If B2R fI aQ# tjJ, we require ')I = 0, ± I in (13.36). The estimate (13.37) then follows 
again since at each point of D' fI BR at least one of the functions w± = ±D,u+v' 
is non-negative. Therefore we have the estimate 

(13.38) f IDipl2 dx~CR"-2+2" 
D + "BR 

for any Y ED' fI D+, R~d/3, provided j#n. By virtue of (13.34), the estimate 
(13.38) is also valid for i=j=n. Hence, by Theorem 7.19, we have 

(13.39) 

where C=C(n, K, IlJAk' d) and cx=cx(n, K, IlJAk»O. Finally, by returning to 
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the original domain Q and boundary values cp we obtain the fundamental global 
Holder estimate of Ladyzhenskaya and Ural'tseva. 

Theorem 13.7. Let u E ('2(0) satisy Qu=O in Q where Q is elliptic in 0 and the 
coefficients aij E ("(0 x IR x 1R"), bE ('°(0 x IR x 1R"). Then if (iQ E ('2, cp E ('2(0) 
with u=cp on eQ, we have the estimate 

(13.40) 

..... here 

(' = C(n, K, I1Kj).g, Q, 4», 

K=lul,;n,4>=ICPI2;n and rx=rx(n, K, I1K/;'K' Q»O. 

An inspection of the proofs of Theorems 13.6 and 13.7 shows that the estimates 
(13.31) and (13.40) continue to hold if we only assume u E (,0. '(Q) n W2.2(Q) and 
cp E W 2 .Q(Q) for some q>n. In this generality we now must take 4>= Ilcpllw 2• Q {o) and 
the constants (' and rx will depend on q. 

Furthermore, it is evident from the development of this chapter that the global 
and interior Holder estimates can be realized as special cases of a partially interior 
estimate. Namely, let us suppose that the operator Q satisfies the hypotheses of 
Theorem 13.7 and let Tbe a ('2 boundary portion of (iQ such that u, cp E ('2(Q u T) 
with u=cp on T. Then, if Qu=O in Q, we have for any Q'e eQ u T the estimate 

(13.41 ) 

where 

('=('(n, K, I1K/AK' T, 4>, d), 

d=dist (Q', (lQ_ T) and rx=rx(n, K, I1g/Ag, T»O. 

13.5. Application to the Dirichlet Problem 

By combining Theorems 11.4, 13.2, 13.4, 13.7, we obtain the following fundamental 
existence theorem. 

Theorem 13.8. Let Q be a bounded domain in lR"and suppose that the operator Q 
is elliptic in 0 with coefficients aij E ("(Ox IRx \R"), bE ('<1(Qx IRx 1R"), O<rx< l. 
Let DQ E ('2.~ and cp E (,2·<1(0). Then, if there exists a constant M, independent ofu 
and a, such that every (,2'''(0) solution of the Dirichlet problems, 

(13.42) 
Qau=di(x, u, Du) Dip+ab(x, u, Du)=O in Q, 

u=acponoQ, O::;;a::;;l, 
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satisfies 

(13.43) lIullcl(Q,= sup lui + sup IDul <M, 
u u 

it follows that the Dirichlet problem, Qu = 0 in 0, u = cp on 00 is solvable in C2 • 2( Q). 
If Q is of divergence form or if n = 2 we need only assume aii E e(Q x IR x IR"). 

The solvability of the Dirichlet problem is reduced by Theorem 13.8 to the 
apriori estimation in the space CI(Q) ofa related family of problems. Provided the 
hypotheses of Theorem 13.8 hold, we therefore need only carry out the first three 
steps of'the existence procedure described in Chapter 11, Section 3. Furthermore 
by invoking the more general Theorem 11.8 instead of Theorem 11.4, we see that 
the family of problems (13.42) can be replaced in the statement of Theorem 13.8 by 
any family of the form 

(13.44) 

where 

Q"u = aij(x, u, Du; (f)Dip+b(x, u, Du; (f)=0 in 0, 

U= (fCP on 00, O::S:; (f::S:; I 

(i) Q I =Q, b(x, z,p; 0)=0. 
(ii) the operators Q" are elliptic in Q for all (f E [0, 1], 

(iii) the coefficients aij, b, are sufficiently smooth; for example, d i , b E 

CI(Q x IR x IR" x [0, I]). 

Notes 

The Holder estimates in Theorems 13.1, 13.2, 13.6 and 13.7 are due to Ladyzhen
skaya and Vral'tseva, [LV 2,3,4]. Our derivation of Theorems 13.6 and 13.7, 
adapted from [TR 1], differs somewhat from theirs, although we retain their key 
idea of a reduction to a divergence structure inequality for the functions w in 
(13.33). Note that we may use the weak Harnack inequality, Theorem 9.22, in place 
of divergence structure results in the derivation of Theorem 13.6 (see [TR 13]). 
Divergence structure theory can also be avoided in Theorem 13.7 by means of 
Krylov's boundary gradient Holder estimate, Theorem 9.31; (see Problem 13.1). 

Problem 13.1. Using the interpolation inequality, Lemma 6.32, show that the 
interior estimates (13.5), (13.13), (13.31) can be cast more explicitly in the form 

(13.45) [Du]a;U' ~ C(d- t - a sup lui + 1) 
0" 

for any 0' ceO" c 0 where C and (X depend on the same quantities as before 
and d = dist(O', 00"). By combining (13.45) with the boundary estimate (9.68) 
(analogously to the proof of Theorem 8.29) deduce the global estimates of (13.1 0), 
(13.14), (13.40) for solutions U E CO. I (C2) n C 2 (0). We remark that these global 
estimates may also be derived directly from the present forms of (13.5), (13.13), 
(13.31); (see [TR 14]). 



Chapter 14 

Boundary Gradient Estimates 

An examination of the proof of Theorem 11.5 shows that for elliptic operators of 
the fonns (11.7) or (11.8) the solvability of the classical Dirichlet problem with 
smooth data depends only upon the fulfillment of Step II of the existence pro
cedure, that is, upon the existence of a boundary gradient estimate. In this chapter 
we provide a variety of hypotheses for the general equation, 

(14.1) Qu=aij(x, u, Du)Dip+b(x, u, Du)=O 

in Dc IRn, that guarantee a boundary gradient estimate for solutions. These 
hypotheses are combinations of structural conditions on Q and geometric con
ditions on the domain D. It will be seen that the gradient bound aspect of the theory 
of quasilinear elliptic equations is not as profound as other aspects ~uch as the 
Holder estimates of Chapters 6 and 13. The boundary gradient estimates are tied 
through the classical maximum principle to judicious and generally natural choices 
of barrier functions. Nevertheless these estimates are of considerable importance 
since they seem to be the principal factor in determining the solvability character 
of the Dirichlet problem. This will be evidenced by the non-existence results at the 
end of the chapter. 

A description of the barrier method to be employed below is appropriate at this 
juncture. This is a modification of ideas already met in Chapters 2 and 6. Let Q 
be an elliptic operator of the form, 

(14.2) Qu=aij(x, Du)Dip+b(x, u, Du), 

where b(x, z, p) is non-increasing in z, and suppose that u E C2(Q) n cl(Q) 
satisfies Qu =0 in D. Suppose that, in some neighborhood .Af = .Afxo of a point 
Xo E aD, there exist two functions w:t = w;o E C2(..AI n Q) n C1(..AI n Q) such that 

(i) ±Qw± <0 in..AI n D 
(ii) w ± (xo) = u(xo) 

(iii) w-(x)~u(x)~ w+(x), x E a(..AI n Q). 

It then follows from the comparison principle, Theorem 10. I, applied to the domain 
.N n D, that 

w- (x) ~ u(x) ~ w+ (x) for all x E ..AI n D, 
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and hence by (ii) 

Consequently, provided they exist at ><0' the normal derivatives ofll'± and u satisfy 

(14.3) 

We call the functions w ± respectively upper and lower barriers at Xo for the operator 
Q and function u. Their existence at all points Xo E oQ, with unifonnly bounded 
gradients. implies the desired boundary gradient estimate for u satisfying Qu = 0 
inQ. 

Before setting about the construction of barriers, it is convenient to have certain 
transformation formulae at our disposal. First, let I be some interval in IR and set 
U= I/I(v) where 1/1 E C 2U), 1/1' =1=0 on I. We then have, for v(x) E I, 

( 14.4) 

where the arguments of aij, Iff and b are x, u=I/I(v) and Du=I/I'Dv. Next, let us 
set u=v+cp for some cp E C 2(Q). Then we have for x E Q, 

(14.5) 

where the arguments of aij and b are x, u=v+cp and Du=Dv+Dcp. Defining 
the function :F by 

( 14.6) :F(x, z,p, q)=aij(x, Z,P)(Pi-q)(Pj-qj)' 

(x, z, P, q) E Q x IR x IR" x IR", 

we see that for the transformed operator Q in (14.5) we have 

(14.7) I(x, v, Dv)=:F(x, u, Du, Dcp). 

Although the formula (14.5) has been implicitly used in Chapter 13 to effect a 
subtraction of boundary values, the explicit relation (14.7) is important for our 
purposes here. As will be evident from the considerations of this chapter, the 
formulae (14.4) and (14.5) foreshadow to some extent the nature of the structure 
conditions required for our barrier constructions. We shall assume throughout 
this chapter that the operator Q is elliptic in the domain Q. 
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14.1. General Domains 

We commence with a barrier construction that is applicable to arbitrary smooth 
domains. Suppose that D satisfies an exterior sphere condition at a point Xo E aD 
so that there exists a ball B= BR( y) with Xo E B fl n = B fl aD. Let us define the 
distance function d(x)=dist (x, aB) and set w=l/I(d) where 1/1 E C 2[0, (0) and 
1/1' >0. By virtue of formula (14.4), we have for any u E C 1(U) fl C 2(D) 

Qw=aij(x, u(x), Dw)Dijw+b(x, u(x), Dw) 

'" 
(14.8) -.1,' ijD ,d+b+~8 

-'I' a iJ (1/1')2 

s::(n-l) .1"A+b+L 8' 
""" R 'I' (1/1')2' 

the last inequality follows since 

We now suppose that Q satisfies a structure condition. Namely, we assume the 
existence of a non-decreasing function Jl such that 

(14.9) IpIA+lbl~Jl(lzj)S 

for all (x, z, p) E D x IR x IR" with I pi ~ Jl(i=j). Using the condition (14.9) in (14.8), 
we obtain 

(14.10) ( 1/1" ) Qw~ (1/I')2+V 8 

provided 1/I'~Jl=Jl(M), where v=(I +(n-I)/R)Jl, M=sup lui. Consider now the 
u 

function 1/1 given by 

(l4.11 ) 
1 

I/I(d)=-Iog (I +kd), k>O, 
v 

and the neighborhood.K = ~o = {xEQld(x) < a}, a > 0. Clearly 1/1" = _V(I/I')2 
in.K . Furthermore, 

(14.12) 
1 

I/I(a)=-Iog (1 +ka)=M if ka=e"M-I 
v 
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and 

k k 
1/1 '(d)- >- in.% n Q 

- v(l + kd)"'" v(l + ka) 
(14.13) 

k 
- v evM 

~Jl. if k~Jl.v evM • 

Consequently, if k and a are chosen to satisfy the relations 

(14.14) ka=evM -I. 

the function w+ = I/I(d) is an upper barrier at Xo for the operator Q and the function 
uprovided u=Oon.% n oQ. Similarly the function w- = -I/I(d) is a corresponding 
lower barrier. Hence if also Qu=O in Q, we obtain from (14.3) the estimate 

(14.15) IDu(xo)1 ~I/I'(O)=Jl. evM if equality holds in (14.14). 

Since the estimates to follow throughout this chapter are derived by essentially 
the same argument as above but with the surface oB replaced by other surfaces, it 
is worth illustrating the situation by the accompanying Figure 2. 

d=Q 

Figure 2 

We now extend the estimate (14. 15) to non-zero boundary values. LetlP E C 2(D) 
and suppose that u = IP on oQ. Then we require the transformed operator given by 
(14.5) to satisfy the structure condition (14.9). It therefore suffices that 

(14.16) <I p - DIPI + ID21PI)A + Ibl ~jL(lzl)§"(x, z, p, DIP) 
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for alI (x, z, p) E 0 x ~ X ~n such that I p - Dq>1 ~ ii(lzi) for some non-decreasing 
function ii. Since 

(14.17) 

~(x, z, p, q)=aij(x, z, p)(Pj-qj)(Pj-q) 

~ ts -aijqjqj by the Schwarz inequality, 

~tS-AlqI2, 

we see that the structure condition (14.9) will imply (14.16) provided we choose 

Consequently, the estimate (14.15) will hold with u replaced by u - q> and Jl. 
replaced by ii. We can therefore assert the folIowing boundary gradient estimate. 

Theorem 14.1. Let u E C 2(0) n C1(Q) satisfy Qu=O in 0 and U=q> on 00. 
Suppose that 0 satisfies a uniform exterior sphere condition and q> E C 2(Q). Then 
if the structure condition (14.9) holds, we have 

(14.18) IDul~C on 00 

where C=C(n, M, Jl.(M), (/>, b), M=sup lui, (/>=1q>1 2;0 and b is the radius of the 
o 

assumed exterior spheres. 

It is often convenient to write condition (14.9) in the form 

(14.19) pA, b = O(C) as Ipl --+ CIJ 

where the limit behavior with respect to I pi is understood to be uniform in 0 x 
(- N, N) for any N>O. In particular, ifQ is uniformly elIiptic in 0 x (- N, N) x ~n 
for any N > 0, that is A = 0(,,1,), and ifalsob = 0(,,1,lpI2), then the structure condition 
(14.9) is fulfilIed. 

14.2 Convex Domains 

We consider in this section barrier constructions that are applicable to convex 
and uniformly convex domains. Suppose that 0 satisfies an exterior plane con
dition at a point Xo E 00, so that there exists a hyperplane f?J with Xo E f?J n Q = 
f?JnoO. Setting d(x)=dist (x. f?J) and w=t/I(d) we then obtain, for any UE 

C l(Q) n C 2(0), 

(14.20) 
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Hence if b = 0(8), so that for some non-decreasing function f..l we have 

(14.21 ) 

the barrier argument of the preceding section is applicable with v = f..l(M), M = sup lui. 
u 

Consequently we obtain an estimate for Du(xo) provided Qu=O in Q and u=O 
on iJQ. In order to extend this result to non-zero boundary values CP. we require 
that AD2cp and b = O(~), that is, 

(14.22) 

for some non-decreasing function ji,. We therefore have the following estimate. 

Theorem 14.2. Let u, cp E C 2(Q) ("'\ CI(m satisfy Qu=O in Q and u=cp on aQ 
and suppose that Q is convex. Then if the structure condition (14.22) holds, we have 

(14.23) IDul~C on oQ 

where C=C(n, M, ji,(M),I'Pit;u), M=sup lui. 
u 

As in the preceding section, the structure condition (14.22) can be replaced in 
the hypotheses of Theorem 14.2 by conditions that are independent of the boundary 
values cp. In particular, either the condition 

(14.24) A = o(S), b = 0(8) as Ipl--+ 00, 

or the condition 

(14.25) A, b = 0(.A.lpI 2 ) as Ipl--+ 00 

implies the validity of (14.22) for some function ji, depending on IcpI2;U' The first 
implication is a consequence of inequality (14.17); the second follows from the 
inequality 

(14.26) ~(x, Z, p, q) ~ .A.(x, Z, p)1 p - ql2, (x, Z, p, q) E Q x IR x IR" x IR". 

We can' therefore assert the following consequence of Theorem 14.2. 

Corollary 14.3. Let u E C 2(Q) n CI(m satisfy Qu=O in Q and u=cp on cQ. 
Suppose that Q is convex and cp E C 2(m. Then, if either of the structure conditions 
(14.24), (14.25) hold, we have 

(14.27) IDul~C oncQ, 
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Corollary 14.3 is in particular applicable to the minimal surface operator 9Jl 
given by 

(14.28) 

Here A. = 1, A = 1 + Ipl2 (see Chapter 10, Examples (i) and (iii», so that the 
boundary gradient estimate is valid in convex domains for the equation 9Jlu = O. 
This result which is already sharp in two dimensions, will be improved for higher 
dimensions in the next section. 

Let us next suppose that the domain Q satisfies an enclosing sphere condition at 
a point Xo E oQ, that is there exists a ball B= BR( y) ~ Q with Xo E oB. Setting 
d(x)=dist (x, oB) and w=I/I(d), we thus obtain, for any U E C1(Q) n C 2(Q), 

(14.29) 

whereff(x, z, p) = trace [aij(x, z, p)] =di(x, Z, p) and ~* = If/I p12. The last relation 
follows since 

A boundary gradient estimate can now be derived from (14.29) if b is bounded in 
terms of either ff or ~. Indeed, let qJ E C 2(Q) and assume there exists a non
decreasing function ji such that 

( 14.30) 
.. I 

la')Di).({J+bl ~R I p-DqJlff +ji§ for I p-DqJl ~ji. 

The domain Q is said to be uniformly convex if it satisfies an enclosing sphere 
condition at each boundary point with a ball of fixed radius R. Our previous 
barrier constructions then yield the following estimate. 

Theorem 14.4. Let u, qJ E C 2(Q) (\ C1(Q) satisfy Qu=O in Q and U=qJ on oQ. 
Suppose that Q is uniformly convex. Then if the structure condition (14.30) holds, 
we have 

(14.31) IDul ~ C 011 oQ 

where C= C(n, M, ji(M), R, IqJI1;n). 

It is clear that the structure condition (14.30) with ji depending on IqJb;n is 
implied by either the condition 

(14.32) b = o(Alpl) + O(A.lpI2) as Ipl-+ CIJ 
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or the conditions 

(14.33) 

Therefore we have the following consequence of Theorem 14.4. 

Coronary 14.5. Let u E C 2(Q) n C1(Q) satisfy Qu=O in a and u=cp on ca. 
Suppose that a is uniformly convex and cp E C 2(Q). Then, if either of the structure 
conditions (14.32) or (14.33) hold, we have 

(14.34) IDul~C on ca 

where C=C(n, M, ji.(M), Icp12' R). 

Corollary 14.5 is in particular applicable to the prescribed mean curvature 
equation 

(14.35) 

Here f7 = I + (n - 1)( I + I p12) so that a boundary gradient estimate will hold for 
solutions of (14.35) in uniformly convex domains provided the function H satisfies 

(14.36) 
(n-I) 

IHI~~ for Ipl~JL(lzl). 

This result will be improved for dimensions higher than two in the next section. 
The structure condition (14.32) is obviously satisfied when b=O. In this case 

Corollary 14.5 can be derived by means of linear barrier functions, since the 
boundary manifold (ca, cp) will satisfy a bounded slope condition. Moreover when 
b = o(A Ip I) in (14.32) in Corollary 14.5, a barrier of the form w = kd, d = dist (x, cB) 
for sufficient large k will suffice for the proof. It is also clear from the above proofs 
that the results of this section will continue to be valid if the structure conditions 
assumed in their hypotheses only hold for x in some neighborhood of ca. 

Remark. With slight modifications the considerations of this and the preceding 
section can be combined, so that a boundary gradient estimate is determined only 
by the local behavior of the boundary ca. It is convenient here to formulate such 
a result for C 2 domains. Let K = K(X o) be the minimum of the principal curvatures 
of ca at Xo and let v = v(xo) denote the inner normal to ca at xo' Suppose there 
exists a non-decreasing function ji. such that for each Xo E ca there is an I: > 0 
for which 

(14.37) 
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with 

Then we have the estimate 

(14.38) IDul~C on au 

where C= C(n, M, ji(M), x). If K(Xo);~:Ko=constant, for all Xo E au we can take 
the non-strict inequality in (14.37) provided K is replaced by "0' As an illustration 
of the possible type of behavior encompassed here, let us consider the equation 

(14.39) 

A boundary gradient estimate will then hold for a convex domain U and arbitrary 
cp E C 2(Q). provided K(Xo»O whenever v(xo)#(± I, 0), that is provided the 
curvature of au is positive except possibly when the tangent line is parallel to the 
Xl axis. 

14.3. Boundary Curvature Conditions 

So far in this chapter we have constructed barriers in terms of the distance function 
of an exterior surface of constant curvature (plane or sphere), the curvature of the 
latter being the significant factor in determining the structure condition imposed 
on the operator Q. By allowing more general exterior surfaces, our previoils con
vexity conditions can be considerably relaxed in more than two dimensions. In the 
following we shall assume that au E C 2 and use the boundary au itself as an 
appropriate exterior surface. Setting d(x) = dist (x, am we see from Lemma 14.16 
that dE C 2(r) where T= {x E Q I d(x)<do} for some do>O. Therefore ifw=l/I(d) 
where 1/1 E C 2 [0, (0) and 1/1'>0 we have by formula (14.4), for any 
u E CI(Q) 11 C 2(Q), 

Qw=aii(x, u(x), Dw)DiiW+b(x, u(x), Dw) 

_ 'ij til' 
-1/1 a Dii+b+(I/1')2 8. 

( 14.40) 

As a preliminary illustration of the general theory of this section, let us consider 
the special case of the minimal surface operator 9Jl ; that is, we take 

(14.41) 

We then have 

d iDijd=(1 + 11/1 '12)L1d-11/I 'I 2 DidDiDii 

( 14.42) =(\ + il/l '12)L1d since IDdl = I, DidDii=O 

~ -(n - 1)(1 + 11/I'12)H' by Lemma 14.17, 
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where H' is the mean curvature of aQ at the point y= y(x) on eQ closest to x. 

Hence, if eQ has non-negative mean curwlure everywhere, we obtain 

as in the convex case of the previous section. A boundary gradient estimate 
then follows as in the preceding section for arbitrary C 2(Q) boundary values if 
b = O( I P 12). We shall show in the next section that this result is sharp for the 
minimal surface equation IDlu=O. Using relations (14.40) and (14.42) we can also 
conclude a corresponding sharp result for the equation of prescribed mean 
curvature (14.35). However, let us first return to the general situation. We assume 
that the coefficients of Q are decomposed in such a way that for p#-O we have 

(14.43) 

where 

a~(x, z, p) = a~(x, pil pi), 

and boo is non-increasing in z. For example, in the case of the minimal surface 
operator IDl we can take 

Using the matrix [a~], we introduce a generalized notion of mean curvature as 
follows. Nameiy, let y be a point of oQ and let v denote the unit inner normal to 
aQ at y, K I , ... , Kn _ I the principal curvatures of aQ at y and a I , ..• , an the diagonal 
elements of the matrix [a~] with respect to a corresponding principal coordinate 
system at y. We then define 

n-1 

(14.44) ..,f·±( y)= L aj ( y, ±V)Kj • 

j= 1 

Since aj ~ 0, i = I, ... , n, the quantities'% ± are a weighted average of the curvatures 
of oQ at y. Furthermore, in the special case of the minimal surface operator IDl, 
we have a j = I, i= I, ... , n-I, an=O and hence 

n-1 

,%+( y)=,%-( y)= L Kj=(n-I)H'( y) 
j= 1 
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where H'(y) denotes the mean curvature of aD at y. Through Lemma 14.17 we see 
that the curvatures .% ± are connected with the distance function d by the formula 

(14.45) 

In order to generalize our earlier result for the minimal surface equation let us 
suppose that the inequality 

(14.46) 

holds at each point Y E cD. In addition we assume that the functions a~, boo E 

C l(r x IR x IR") and that Q satisfies the structure condition 

(14.47) A, Ipla~, bo = 0(8) as Ipl-+ 00, i,j = 1, ... , n, 

so that for some non-decreasing function Jl we have 

(14.48) 

As previously we shall assume initially that the function u vanishes on cD. Then 
taking w as before we have 

QW =aij(x, u(x), Dw)Dijw+IDwIA(x, u(x), Dw)baJx, w, Dw) 

+ bo(x, u(x), Dw) 

"," 
= '" 'A(a~Di/+ boo) + '" 'a~ Di/+ ho + I'" '12 tf 

by (14.4) and (14.43), where 

a~Di}d+ h", =a~(x, v)Di}d(x) +boo(x, w, v) 

~a~(x, v)Di/(y)+boo(x, 0, v) by Lemma 14.17 

~(a~(x, v) -a~( y, v»Di/( y)+ boo(x, 0, v) - boc ( y, 0, v) 

by (14.45) and (14.46) 

Here y= y(x) is the point on cD closest to x, v = Dd( y) = Dd(x) is the inner unit 
normal to cD at y and the constant K is given by 

( 14.49) 
I(a~(x, v) -a~( y, v»Di}d( y)+ boo(x, u( y), v) - bCX)( y, u( y), v)1 

K=sup . 
xer Ix-yl 
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Hence by (14.48) we obtain 

provided ""d~ 1 and ""~p. where v=(K+ 1 +sup ID2dl)p., p.=p.(M) and M= 
r 

sup lui. Consequently by choosing", by formula (14.11) and taking k large enough 
r 

to guarantee a ~ do, the function w + = w will be an upper barrier at every point of 
au for the operator Q and the function u. A lower barrier is similarly constructed 
provided instead of (14.46) the inequality 

(14.46)' .)f"- ~ -b",,(Y, u(y), -v) 

holds at each point y E au. Hence, if both (14.46) and (14.46)' hold and Qu=O 
in U, then u will satisfy the estimate (14.3) at each Xo E au. In order to extend 
these results to non-zero boundary values lp, we require that A, I P/dJ and bo = 
O(~), that is, 

(14.50) 

for some non-decreasing function ii. For the transformed operator Q given by 
(14.5) we can take a~ =a~, boo(x, Z+ lp, p)=boo(x, z, p) so that conditions (14.46) 
and (14.46)' are unchanged. We therefore have the following estimate. 

Theorem 14.6. Let u E C 2(U) '""' C 1(U), lp E C 2(U) satisfy Qu=O in U and U=lp 

on au. Suppose that Q satisfies the structure conditions (14.43), (14.50) and that at 
each point Y E au the inequalities 

(14.51) .)f"- ~ -boo(y, lp(Y), -v) 

hold. Then we have the estimate 

(14.52) IDul~C on au 

where C=C(n, M, ii(M), u, K, Ilpb;u), M=sup lui and K is given by (14.49) with 

u replaced by cpo u 

As in the case of convex U treated in Section 14.2, the structure condition 
(14.50) can be replaced in the hypotheses of the above theorem by conditions that 
are independent of the boundary values cpo In particular either the condition 

(14.53) A = 0(8), Ipla~, bo = 0(8) as Ipl ~ 00, 
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or the condition 

(14.54) 

implies the validity of (14.50) for some function ji depending on IcpI2;Q. We can 
therefore assert the following consequence of Theorem 14.6. 

Corollary 14.7. Let u E C 2(Q) n CI(Q), cp E C 2(Q) satisfy Qu=O in D and u=cp 
on (1D. Suppose that, in addition to (14.43), either of the structure conditions (14.53), 
(14.54) hold and that the inequalities (14.51) are satisfied on cD. Then we have the 
estimate 

( 14.55) IDul ~ C on cD, 

l1'here C=C(n, M, ji, D, K, IcpI2;Q). 

The application of Corollary 14.7 to the equation of prescribed mean curvature, 

( 14.56) 

where HE C I(Q x IR) and D,H? 0, now yields the following result. 

Corollary 14.8. Let u be a C 2(Q) n CI(Q) solution of equation (14.35) in D with 
U= cp on oD where cp E C 2(Q). Suppose that the mean curvature H' of oD is such that 

(14.57) H'(Y)?n:IIH(Y,CP(Y»1 VYEoD. 

Then we have the estimate 

( 14.58) IDul ~ C on oD, 

where C=C(n, M, D, HI' IcpI2;Q)' M=sup lui, HI = sup (IH]+IDH]). 
Q OX(-M,M) 

The sharpness of Corollary 14.8 will be demonstrated in the next section. Note 
that the result could have been derived more directly by proceeding along the lines 
of our earlier treatment of the minimal surface equation, 9Jlu = O. 

So far the results in this section have necessitated some control over the 
behavior of the maximum eigenvalue A with respect to .~, C or A.. We move on now 
to consider a situation where such controls are not imposed but where, to com
pensate, the inequalities (14.51) must hold in the strict sense everywhere on the 
boundary oD. The forerunner of this situation is the case in Corollary 14.5 where the 
structure condition (14.32) holds. To proceed further we assume that in the 
decomposition (14.43) the coefficients a~, boo are continuous on oD x IR x IR" and 
that the coefficients 

(14.59) a~ = o(A), bo = o(lpIA) as Ipl -+ 00. 
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Let U E C°(.O) " C 2(Q) satisfy Qu=O in Q and U= q> on oQ where q> E C 2(Q) and 
suppose that the strict inequalities 

(14.60) X+ >boo(y, q>(y), v), X- > -booty, q>(y), -v) 

hold everywhere on iJQ. Assume initially q>=0 so that setting w=kd for some 
positive constant k, we have 

Qw=aij(x, u(x), Dw)Djjw+IDwIA(x, u(x), Dw)boo(x, w, Dw) 

+ bo(x, u(x), Dw) 

=kA(a~(x, Dd)Di/J+boo(x, w, Dd»+ka~Di/i+bo 

= A{k(a~(x, Dd)Dijd + boo(x, w, Dd)) + o(k)} 

by (14.59). Now by Lemma 14.16, the relation (14.45) and the fact that boo is non
increasing in z, there exist positive constants X and a ~ do such that 

in the neighborhood.Ai = {x E Q I d(x)<a}. Hence we obtain 

(lw ~ A( -kX + o(k)) < 0 for sufficiently large k. 

Consequently, by choosing k large enough so that also ka~ sup lui, the function 
u ~ 

w+ =W will be an upper barrier at every point of iJQ for the operator Q and the 
function u. Similarly the function w- = - w will be a corresponding lower barrier 
and we obtain IDul ~ k on iJQ for U E C I(Q). This result extends automatically to 
non-zero boundary values q> by replacement of u by u - q> and use of (14.5). Thus 
we have proved the following estimate. 

Theorem 14.9. Let u E C 2 (Q) " C I(Q), q> E C 2(Q) satisfy Qu=O in Q and 
U=q> on iJQ. Suppose that Q satisfies the structure conditions (14.43), (14.59) and 
that the inequalities (14.60) hold at each point y E iJQ. Then we have the estimate 

(14.61) IDul~C oncQ 

where C=C(n, M, a~, a~, boo, bo' Q, Iq>b;u) and M=sup lui· 
u 

The dependence of the constant C in Theorem 14.9 on the coefficients a~, bo 
arises through the structure conditions (14.59), and the dependence on the co
efficients a~, boo through their moduli of continuity on iJQ x IR x IR". 

To conclude this section, let us note the relationship of the results here to those 
of the preceding sections. If we choose a~ = boo =0 in the decomposition (14.43), 
then Theorem 14.6 reduces to Theorem 14.1 for oQ E C 2. Next although the results 
in Section 14.2 on convex domains are not special cases of Theorems 14.6 and 14.9 
they are encompassed by slight variants of these theorems which are treated in 
Problems 14.2 and 14.3. 
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14.4. Non-Existence Results 

We present here some non-existence results which show that many of the conditions 
in the theorems of the preceding sections cannot be significantly relaxed. Since the 
class of equations considered in this section include equations for which Steps I 
and III of the existence procedure, described in Chapter 11. are readily established. 
it follows that the non-solvability of the Dirichlet problem for these cases is due to 
the lack of a boundary gradient estimate. Indeed the non-existence of such an 
estimate for these equations can be demonstrated directly by techniques analogous 
to those used below. 

The main tool for our treatment of non-existence results is the following variant 
of the comparison principle, Theorem 10.1. 

Theorem 14.10. Let 0 be a bounded domain in Rft and T a relatively open C 1 portion 
ofoO. Then ifQ is an elliptic operator oftheforrn (l4.2) andu E CO(U) (") C 2(Ou 1), 
VE CO(U) (") C 2(0) satisfy Qu>Qv in 0, u~v on 00-[", ov/iJv= -00 on T, it 
follows that u~v in O. 

Proof By Theorem 10.1, we have 

sup (u-v)~sup (u-v)+. 
r 

Since 

o ou ov 
-(u-v)=---=oo 
OV ov ov 

on T, the function u- v cannot achieve a maximum value on T. Henceu~ vinO. 0 

In orderto apply Theorem 14.IO,weletYEoObefixed,b = diamO,O < a < 15/2, 
and consider the function w defined by 

w(x)=m+I/I(r), r=lx-YI, 

where mER and 1/1 E C 2(a, b) is such that 1/1(15)=0, I/I'~O, I/I'(a)= -00. Using 
(14.8), we obtain for u E C 2(Q), r>a, 

(14.62) 

Qw=aii(x, u(x), Dw)DiiW + b(x, u(x), Dw) 

= 1/1' (ff -8*)+ .~:' 2 8+b, 
r (." ) 

the arguments of ff = trace [di], 8* = 8/1 p12, 8 and b being x, u(x) and Dw. We 
now wish to choose the function 1/1 in such a way that Qw<O in the domain U= 
{x E Qlr>a, lu(x)1 >M} for some constant M. If this is done and Qu=O in 0 we 
then have by Theorem 14.10 

(14.63) sup u~M+m+I/I(a) 
0- Bal..) 
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where 

m= sup u+. 
aU-Baty) 

14. Boundary Gradient Estimates 

The estimate (14.63) can be regarded as a preliminary stage in the establishment of 
non-existence results. 

We shall consider two different cases. 

(i) First, let us suppose that 

(14.64) 

for x E a. Izl ~ M. I pi ~ L where M, Land (J are positive constants. Then setting 

( 14.65) 

where fJ = (J/(1 + (J) and K E IR we obtain, for sufficiently large K, Qw < 0 in 
D. Hence the estimate (14.63) holds in this case. 

(ii) Next, let us suppose that 

( 14.66) 
b~O, 

8~J1.(.r -8*)1 pll-Il 

for .'( E a, 1=1 ~ M, I pi ~ 0, where J1., () and M are positive constants. Then we have, 
inD, 

?iw~ --+-- 8<0 ( 11/1 'Ill 1/1") 
\! '" w (1/1 ')2 

for the specific choice 

(14.67) 

where fJ = 1/( I + 0). Hence again the estimate (14.63) follows. Note that the function 
1/1 given by (14.67) satisfies 

lim I/I(a) =0. 

Now let us assume that the domain a satisfies an interior sphere condition at the 
point y so that there exists a ball B= BR(xO) c a with Y E B n ca. We then consider 



14.4. Non-Existence Results 349 

the function w* defined by 

(14.68) w*(x)=m*+x(r), r=lx-xol 

where m* E IR and X E C 2(0, R-e), O<e<R, is such that X(O)=O, X';?;O and 
x'(R-e)= 00. By (14.62) we have, for r>O, 

(14.69) - x' X" 
Qw*=- (ff -8*)+- 8+h. 

r (X ')2 

Let us impose now a stronger condition than (14.64), namely that 

(14.70) b + !E.l ff ~ - I P 18 8 0 < R' < R R' ""'0::::, , 

for XED, Izl ;?; M, I pi ;?; L. Then setting 

(14.71) 
(J 

x(r) = K{(R - e)fI - (R - e - r)fI}, p = 1 + (J' 

we obtain, for sufficiently large K, Q w* < 0 in the domain d = {x E D II x - y I < R, 
R' < Ix - xol < R - e, lu(x)1 > M}. Hence by Theorem 14.10 we have 

(14.72) 

where 

sup u~M+m*+x(R-e) 
a 

m*= sup U. 

Ix-yl=R 

Combining the estimates (14.72) and (14.63) with a = R - R', and letting e tend to 
zero, we therefore obtain the estimate 

(14.73) u(y)~ 2M +m+K[(b-Rt+RfIJ 

where K depends on (J and Land 

m= sup U. 
iJU-BR(Y) 

The estimate (14.73) shows that the boundary values of the function u cannot be 
specified arbitrarily on aD. Since the above argument can be repeated with u 
replaced by - u, the structure condition (14.70) can be relaxed to 

(14.74) 
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for x E Q, 1=1 ~ M, I pi ~ L. We have thus proved the following non-existence 
result. 

Theorem 14.11. Let Q be a bounded domain in IR" and suppose that the operator Q 
satisfies the structure condition (14.74) where R is the radius of the largest ball 
contained in Q. Then there exists a function qJ E C""(D) such that the Dirichlet 
problem Qu = 0 in Q, U = qJ on oQ is not solvable. 

Theorem 14.11 implies that both Theorems 14.1 and 14.4 are sharp in the sense 
that the quantities e, .~ in the structure conditions (14.9), (14.30) cannot be 
replaced by I plge, I pl9JO for some lbO, (even if the operator Q is the Laplacian !). 
Furthermore, in Corollary 14.5, we can neither replace (14.32) by the condition, 
b = O(A/pl) as Ipl--+ 00, nor in the second inequality in (14.33), replace A/p/2 by 
).lp/2+9 for some (bO. 

We shall use case (ii) above to demonstrate the need for the geometric restric
tions in Section 14.3. Let us assume that the decomposition (14.43) is valid with 
b"£ independent of z and a~, bx continuous on oQ x IR x IR" and satisfying the 
structure conditions (14.59). In addition we impose on the operator Q the structure 
conditions 

(14.75) 

for x E Q. 1=1 ~ M, I pi ~ 0, where p.. (1 and M are positive constants. It is easy to 
show that the conditions (14.43), (14.59), (14.75) imply that condition (14.66) 
holds for x E Q, M:::;; 1=1:::;; M, P E IR n for some constant M and a possibly different 
constantp. than that in (14.75). Moreover, since (14.75) also implies, by the classical 
maximum principle, Theorem 3.1, that 

(14.76) sup u:::;;M+sup u, 
u au 

we can assume below that (14.66) is applicable in Q+ = {x E Q I u(x»O} and that 
also in Q+ the quantities in (14.59) are bounded in terms of sup u. Let us now 

au 
suppose that 2Q E C 2 and that 

(14.77) 

where r- is given by (14.44) and" denotes the unit inner normal to oQ at y. The 
argument which follows is analogous to the proof of Theorem 14.11, the interior 
sphere at y being replaced by another quadric surface. In fact, condition (14.77) 
implies that for sufficiently small a, there exists a quadric surface Y' tangent to oQ 
at J' such that (i) //' has a unique parallel projection onto the tangent plane at Y. 
(ii)Y' ("\ Ba(y)cQ and (iii) the curvature.Jt'·- corresponding toY'.r;, satisfies 

(14.78) 
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for some" > O. We now consider the function w* defined by 

(14.79) w*(x)=m*+x(d), d=dist (x, 9'), 

where m* E IR and X E C 2(1:, a), O<I:<a, is such that X(2a)=O, X'~O, X'(I:)= -00 . .. 
By (14.40) we have, in the domain Q= {x E Q IIx- yl <a, I:<d<a, u(x»M}, 

Setting 

(14.80) 

Q"w* = x' A(a~ Dijd + bao } + x' a~ Djjd + bo + (:';2 tff 

~X'A(,,+o(1»+ X:)' 2 S by (14.59) and (14.78), 
(X 

~X'A(,,+0(1)+J.Lx"lx'I-2-9) by (14.75). 

X(d) = K[(2a -I:)II-(d-I:)II], 

where (J = e/(1 + (J), we then obtain, for sufficiently large K, 

Qw*<O 

.. 
in Q. Hence by Theorem 14.10, we have 

(14.81) 
sup u~M+m*+X(I:) 
D 

where 

m*= sup u. 
Ix-yl=a 

Combining the estimates (14.81), (14.63) and letting I: tend to zero, we therefore 
obtain the estimate 

(14.82) u( y)~ 2M +m+ 1/1 (a) + K(2a)1I 

where 1/1 is given by (14.67) and 

m= sup U. 

iJQ- Baly) 

Again, the estimate (14.82) shows that u cannot be prescribed arbitrarily on oQ. 
The sharpness of Theorem 14.6 is thus evidenced by the following non-existence 
result. 
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Theorem 14.12. Let D be a bounded C 2 domain in Rn and suppose that the operator 
Q satisfies the structure conditions (14.43), (14.59) and(l4. 75). Then if the inequality 

(14.83) 

holds at some point Y E aD, there exists afunction cP E coo(U) such that the Dirichlet 
problem, Qu=O in D, U=cP on aD, is not solvable. 

If we replace u by - u in the above considerations, we obtain a similar conclu
sion with the inequality (14.83) replaced by 

(14.84) 

provided b is replaced by -b in the structure conditions (14.75). Also if M=O in 
(14.76) we can choose sup Icpl to be arbitrarily small. Specializing to the equation 

au 
of prescribed mean curvature (14.56) with H(x, z)= H(x), we therefore have 

Coronary 14.13. Let D be a bounded C 2 domain in Rn and suppose that at some 
point y E aD the mean curvature H' of aD is such that 

(14.85) 
n 

H'(Y)<n_IIH(Y)1 

where HE COOl) is either non-positive or non-negative in D. Then, for any e>O, 
there exists a function cp E Coo(Q) with sup Icpl ~ e, such that the Dirichlet problem, 
Qu=O in D, u=cp on aD, is not solvable. 

Combining Corollaries 14.8 and 14.13 with our treatment of the existence 
procedure for the special case (11.7) in Section 11.3, we obtain the following sharp 
criterion of Jenkins and Serrin for solvability of the minimal surface equation 
[JS 2]. 

Theorem 14.14. Let Dbea boundedC 2 .y domain in R", O<y< l. Then the Dirichlet 
problem IDlu=O in D, u=cp on aD, is solvable for arbitrary cp E C 2 , Y(U) if and only 
if the mean curvature H' of aD is non-negative at every point of aD. 

The prescribed mean curvature equation will be studied further in Chapter 16. 
We note here that the restriction that boo is independent of z in Theorem 14.12 can 
be removed and consequently that condition (14.85) in Corollary 14.13 can be 
replaced by 

(14.86) 
n 

H'(y) <sup -IIH(y, z)l; 
zeit n-

(see Problem 14.5). It is also worth comparing the results of this section with the 
existence theorems of Section 15.5 in the next chapter. 
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14.5. Continuity Estimates 

The barrier constructions of Sections 14.1, 14.2 and 14.3 can be adapted to provide 
boundary modulus of continuity estimates for Coa:n n C 2 (Q) solutions of 
equation (14.1). In particular, we observe that if in the hypotheses of any of the 
gradient estimates of these sections, we only assume that U E CO(Q) n C 2(Q) then 
we obtain, in place of an estimate for sup IDul. a bound for the quantity 

iJD 

lu(x) - u( y)1 
sup I I 
xeD X-Y 
yeiJD 

Furthermore a boundary modulus of continuity estimate still results when we only 
assume that the boundary values cp E Co(oQ). To show this we fix a point y on cQ 
and for arbitrary t:>0, choose <»0 such that Icp(x)-cp( y)1 <t: whenever Ix-yl <<>. 
We then define functions cpt E C 2(Q) by 

(14.87) 

Clearly, on oQ we have 

Hence if the operator Q and the functions cp ± satisfy any of the conditions of the 
estimates derived in Sections 14.1, 14.2 and 14.3, we obtain an estimate 

(14.88) 

in.K n Q where w ± are the relevant barrier functions and.K is some neighborhood 
of y. Since in all our previous barrier constructions we had w+ = - 11'- = w, it 
follows from (14.88) that 

( 14.89) 
2 sup Icpl 

lu(x) - cp(Y)1 ~ t: + w(x)+ <>2 Ix - yl2 

in .K n Q. We can therefore assert the following continuity estimates. 

Theorem 14.15. Let u, cp E CO(.Q) n C 2(Q) satisfy Qu=O in Q and u=cp on cQ. 
Suppose that the operator Q and domain Q satisfy the structural and geometric 
conditions of either Theorem 14.1, Corollary 14.3, Corollary 14.5, Corollary 14.7 or 
Theorem 14.9. Then the modulus of continuity ofu on cQ can be estimated in terms of 
the modulus of continuity of cp on cQ, sup Icpl, sup lui, Q and the coefficients of Q. 

iJD D 
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14.6. Appendix: Boundary Curvatures and the Distance Function 

Let Q be a domain in Rn having non-empty boundary aQ. The distance function d 
is defined by 

(14.90) d(x)=dist (x, am. 

It is readily shown that d is uniformly Lipschitz continuous. For let x. y E Rn and 
choose Z E aQ such that ly-zl=d(y). Then 

d(x)~lx-zl ~Ix- YI +d(y) 

so that by interchanging x and y we have 

(14.91) Id(x)-d(y)1 ~Ix-YI· 

Now let aQ E C 2 • For Y E aQ, let v(y), and T(y) denote respectively the unit 
inner normal to aQ at y and the tangent hyperplane to OQ at y. The curvatures of 
OQ at a fixed point Yo E aQ are determined as follows. Bya rotation of coordinates 
we can assume that the xn coordinate axis lies in the direction v(Yo)' In some 
neighborhood .·¥=.¥(Yo) of Yo. aQ is then given by xn=<P(x') where x'= 
(Xl' ... , xn - l ), <P E C 2(T(yo) n v¥) and D<p(y~) =0. The curvature of aQ at Yo is 
then described by the orthogonal invariants of the Hessian matrix [D2<p] evaluated 
aty~. Theeigenvaluesof[D2<p(y~)]. "1' ... , "n- l' are called the principal curvatures 
of aQ at Yo and the corresponding eigenvectors are called the principal directions 
of aQ at Yo' The mean curvature of aQ at Yo is given by 

(14.92) 

By a further rotation of coordinates we can assume that the Xi" .•• Xn _ 1 axes lie 
along principal directions corresponding to "1' ... , len _ 1 at Yo' Let us call such a 
coordinate system a principal coordinate system at Yo' The Hessian matrix 
[D2<p()'~)] with respect to the principal coordinate system at Yo described above 
is given by 

(14.93) 

The unit inner normal vector v{y')=v(y) at the point y=(y'. <p(y'» E . .11" n aQ 
is given by 

(14.94) 

Hence with respect to the principal coordinate system at Yo. we have 

(14.95) 
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For Jl>O,let us set r,,={xEQI d{x)<Jl}. The following lemma relates the 
smoothness of the distance function din r" to that of the boundary aD. 

Lemma 14.16. Let D be bounded and aD E CkJor k ~ 2. Then there exists a positive 
constant Jl depending on D such that dE Ck(r,,). 

Proof The conditions on D imply that aD satisfies a uniform interior sphere 
condition; that is, at each point Yo E aD there exists a ball B depending on Yo such 
that 11 n (~" - Q) = Yo and the radii of the balls B are bounded from below by a 
positive constant, which we take to be Jl. It is easy to show that Jl- 1 bounds the 
principal curvatures of aD. Also, for each point x E r ", there will exist a unique 
point y= y(x) E aD such that Ix- yl =d(x). The points x and yare related by 

(14.96) x=y+v(y)d. 

We show that this equation determines y and d as Ck - 1 functions of x. For a 
fixed point Xo E r ", let Yo = y(xo) and choose a principal coordinate system at Yo. 
We define a mapping g=(gl, ... , g") from JU=(T(yo) n .'V(Yo» x ~ into ~n by 

g(y', d)= y+v(y)d, y={y', qJ(y'». 

Clearly g E Ck - I(JU), and the Jacobian matrix of g at (y~, d(x» is given by 

(14.97) 

Since the Jacobian of g at (y~, d(xo» is given by 

(14.98) 

it follows from the inverse mapping theorem that for some neighborhood .A = 
.A(xo), the mapping y' is contained in Ck-1(.A). From (14.96) we have Dd(x) = 
v(y(x»=v(y'(x» E Ck- 1(.A) for x E .A. Henced E Ck(.A), and thusd E Ck(r,,). 0 

An expression for the Hessian matrix of d at points close to aD is an immediate 
consequence of the proof of Lemma 14.16. 

Lemma 14.17. Let D and Jl satisJy the conditions oj Lemma 14.16 and let Xo E r", 
Yo E aD be such that I Xo - Yo I = d(xo). Then, in terms oj a principal coordinate 
system at Yo, we have 

(14.99) 

Proof Since 

Dd(xo) = v(Yo) =(0, 0, ... , 1) 
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we have Djnd(xo) = 0, i = 1, ... , n. To obtain the other derivatives we write, for 
i,j= I, ... , n-I, 

by (14.95) and (14.97). 0 

Note that the result of Lemma 14.17 is equivalent to the geometrically evident 
statement that the circles of principal curvature to au at Yo and to the parallel 
surface through Xo at Xo are concentric. 

Mean Curvature 

Let us derive now a formula for the mean curvature of a C 2 hypersurface 6 in 
terms of its given representation. Let Yo E 6 and suppose that in a neighborhood 
%of Yo' 6 is given by l/I(x)=O where 1/1 E C 2(%) and IDI/II >0 in %. The unit 
normal to 6 at a point y E 6 fl % (directed towards positive 1/1) is given by 

(14.100) 
DI/I 

V=--' 
IDI/II 

Let "1' ... , "11-1 be the principal curvatures of 6 at Yo' Then with respect to a 
corresponding principal coordinate system at Yo' one can show that 

D j (I~:I)= -"j {)jj' i,j= I, ... , n-I, 

(14.101) 

( DIII/I) Dj IDI/II =0, i= I, ... , n. 

Consequently the eigenvalues of the matrix [D}Djl/l/IDl/JllJ at Yo with respect to 
the original coordinates are - "1' ... , - "n _ l' 0 and hence the mean curvature 
of 3 at Yo is given by 

(14.102) 

In particular if 3 is the graph in (Rn. 1 of a function of 1/ variables II E C 2(Q), that 
is, 3 is defined by xn + 1 = U(x l' ...• x n ). the mean curvature of 3 at .\0 E Q is 
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given by 

(14.103) 

6 is called a minimal surface if H(xo) = 0 for all Xo E O. 
Note that we also obtain from (14.101) the following formula for the sum of the 

squares of the principal curvatures K 1 •...• Kn at x o. 

n n 

(14.104) ct2= L K?(Xo)= L DjvjDjvj(xo). 
j= 1 j.j= 1 

where 

i= I .... , n. 

Finally, the Gauss curvature of 6 at Xo is given by 

n 

(14.105) K(xo) = n Kj 

Notes 

j= 1 

= det [DjvJ 

det D2u 

Many of the basic features of our treatment of boundary gradient estimates are 
already present in the early work of Bernstein for equations in two variables, [BE 
1,2,3,4,5,6]. Indeed, Bernstein employed auxiliary functions such as the function 
'" in (14.4) for similar purposes and also considered the question of non-existence. 
Bernstein's work in two variables was continued by Leray [LR], who also con
sidered the relationship between the solvability of the Dirichlet problem in a 
domain 0 and the geometric nature of the boundary co. Finn showed that 
convexity was a necessary and sufficient condition for the solvability of the Dirichlet 
problem for the minimal surface equation in two variables [FN 2, 4]. 

The first striking results for equations in more than two variables were proved 
by Jenkins and Serrin [JS 2], (see Theorem 14.14), and Bakel'man [BA 5, 6]. A 
general theory embracing many interesting examples was finally developed by 
Serrin ESE 3] to whom the results of Sections 14.3 and 14.4 are due. We have 
adopted some minor simplifications from [TR 5] in the exposition of Section 14.3. 
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Problems 

14.1. Suppose that in the hypotheses of Theorem 14.6 we havea~, boo independent 
of x and cp == O. Show that the estimate (14.52) continues to hold when the restriction 
on A in (14.50) is removed. 

14.2. Suppose that only the coefficient b of Q is decomposed according to (14.43). 
Show that the result of Theorem 14.6 continues to hold provided we take a~=O 
in (14.50) and replace the inequalities (14.51) by 

(14.106) K(Y)~ ±boo(y, cp(y), tv) 

where K( y) is the minimum principal curvature of cQ at y. 

14.3. Again, suppose that only the coefficient b of Q is decomposed according to 
(14.43). Show that the result of Theorem 14.9 continues to hold provided we take 
a~ = 0 in (14.59) and replace (14.60) by 

(14.107) K(Y» ±b(x'(y, cp(y), tv). 

14.4. Show that the results of Problems 14.2 and 14.3 can be sharpened by 
replacing the maximum eigenvalue A by the trace!T and compare these results with 
Theorem 14.5. 

14.5. Derive the assertion at the end of Section 14.4 (see ESE 3]). 



Chapter 15 

Global and Interior Gradient Bounds 

In this chapter we are mainly concerned with the derivation of apriori estimates 
for the gradients of C2(U) solutions of quasilinear elliptic equations of the form 

(15.1) Qu=aii(x, u, Du)Djp+b(x, u, Du)=O 

in terms of the gradients on the boundary aD and the magnitudes of the solutions. 
The resulting estimates facilitate the establishment of Step III of the existence 
procedure described in Section 11.3. On combination with the estimates of 
Chapters 10, 13 and 14, they yield existence theorems for large classes of quasilinear 
elliptic equations including both uniformly elliptic equations and equations of 
form similar to the prescribed mean curvature equation (10.7). Since the methods 
of this chapter involve the differentiation of equation (15.1), our hypotheses will 
generally require structural conditions to be satisfied by the derivatives of the 
coefficients d i , b. In Section 15.4 we shall see that these derivative conditions can be 
relaxed somewhat for equations in divergence form, where different types of 
arguments are appropriate. 

We shall also consider in this chapter the derivation of apriori interior gradient 
estimates. Such estimates lead to existence theorems for Dirichlet problems where 
only continuous boundary values are assigned. Interior gradient bounds for 
equations of mean curvature type will be treated in Chapter 16. 

15.1. A Maximum Principle for the Gradient 

We commence with a gradient bound under relatively simple hypotheses which will 
also serve as an illustration of the general technique to be applied in the following 
section. Let us suppose that the principal coefficients of the operator Q can be 
written as follows: 

where a~ E C1(R"), cj E C1(D x R x R"), i, j = I, ... , n, and the matrix [a~] is non
negative. The following are examples of such decompositions: 
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(i) If Q is elliptic with principal coefficients aij depending only on P, then clearly 
we can take aij = aij and ('.=0' * I' 

(ii) The Euler-Lagrange equation corresponding to a multiple integral of the 
form 

(15.3) f F(x, u, IDul) dx, 
u 

where FE C2(Q x R x R), D,F-:f,O, t=lpl, can be written as 

(15.4) 
Au +{(IDuID"F/DF)-llIDul-2DjuDpDjp 

+ <l DuI2D,zF + DjuD,x;F-IDuIDzF)/D,F=O, 

so that the decomposition (15.2) is valid with 

provided cj E CI(Q x R x R"), i= I, ... , n. 

(iii) In the special case of two variables we can write 

where 

.0/" = trace [a ji] = all + a22 

8*=8/lpI 2 = ciipjp/lpl2, 
d l =[(a ll _a22 )PI +2aI2p2]~pI2, 

d2 = [2a12pI + (a22 -all )P2]/lpI2. 

Hence for n = 2, the equation (15.1) is equivalent to the equation 

where cj=d/(.o/" -8*), b*=b/(.o/" -8*); the decomposition (15.2) is clearly valid 
for equation (15.6) with a~={F 

The basic idea in our treatment of gradient bounds, which goes back as far as 
Bernstein's work [BE I], involves differentiation of equation (15.1) with respect 
to Xk' k = I, ... , n, followed by multiplication by Dku and summation over k. 
The maximum principle is then applied to the resulting equation in the function 
v=IDuI 2. By (15.2) we can write equation (15.1) in the form 

a~(Du)Djp+tCj(x, u, Du)Djv+b(x, u, Du)=O. 
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Assuming that the solution u E C3(Q) we then obtain, by differentiation with 
respect to xk ' 

a~Dijku+ Dp,a~D'kuDiju+t(CPikV+ DkcPiV) 

+ Dp,bDlkU + DkuDzb + DXkb = o. 

Multiplying by Dku and summing over k, we thus have 

(15.7) 

where () is the differential operator, acting on C 1(Q x IR x IR"), defined by 

( 15.8) 

We next apply the following consequence of Schwarz's inequality 

( 15.9) 

and hence obtain 

(15.10) 

where ~ = trace [a~] and 

Consequently, if the inequality 

(15.11) 
b2 

IpI2{)b::::;~ 
~* 

holds in Q x IR x IR", we obtain immediately from the classical maximum principle, 
Theorem 3.1, that sup v = sup v. In order to extend this result to C2(Q) solutions 

n IW 

we write equation (15.7) in the divergence form 

which has the corresponding integral form 

2 f ,.,a~DikUDjkU dx + f (a'j Djv + 2bDiu)Dn dx 
n n 

(15.12) 
- f[(Dp,a~Dlju-Dpij+DkUDkCi)DiV}'" dx+ f 2b,., Au dx=O 

n n 
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for all " E C~(Q) (see equation 13.17). An approximation argument as in Section 
13.3 shows that equation (15.12) continues to be valid for u E C2 (Q). Integrating 

the term f 2m, Au dx by parts, and then proceeding as above for the case of C3(Q) 
o 

solutions we obtain the weak inequality 

(15.13) 

for v E Clm) and the estimate sup v=sup v follows from the maximum principle, 
o cO 

Theorem 8.1. 
We have therefore proved the following gradient maximum principle. 

Theorem 15.1. Let u E C2(Q) n C 1(Q) satisfy equation (15.1) in the bounded 
domain Q and suppose that Q is elliptic in Q with coefficients satis/ring (15.2) and 
(15.11). Then we have the estimate 

(15.14) sup IDul = sup IDul 
o cO 

It is clear from the above proof that conditions (15.2) and (15.11) in the 
hypotheses of Theorem 15.1 need only hold for Izl ~sup lui. Furthermore, if they 

a 
also hold for Ipi ~ L for some constant L, we obtain in place of( 15.14) the estimate 

(15.15) sup IDul~max {sup IDul, L}. 
a 00 

The estimate (15.15) follows by applying Theorem 15.1 in the domain Q L = 
{x E QI I Dul > L }. 

Note that when Theorem 15.1 is applied to examples (ii) and (iii) above where 
a~ = bii the condition (15.11) reduces to 

(15.16) 

In particular if b=O, we obtain a gradient maximum principle. 

15.2. The General Case 

The technique to be employed in this section is basically a modification of that in 
the preceding section through the use of an auxiliary function. Assuming initially 
that u is a C2(Q) solution of equation (15.1 ), we set m = inf u, M = sup u and let t/I 

a a 
be a strictly increasing function in C3 [m, M] with m = t/I(m), M = t/I(M). Defining 
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the function U by u = I/I(u), so that 

DiU=I/I'DiU 

DiP= I/I"D/Wi + I/I'Diju, 

we have the equation (see also (14.4», 

(1S.17) 
1/1" 

I/I'aij(x, u, Du)Diju+b(x, u, Du)+ (1/1')2 g(x, u, Du)=O. 

Let us now write v=IDuI 2 , v=IDu1 2 and apply the operator DkuDk to the equation 
(1S.17). We obtain thus 

(1S.18) 

Next, letting;5 be the operator acting on C1(Q x IR x IR") defined by 

(1S.19) ;5=p.D 
I p, 

and introducing the function 

(1S.20) 

we obtain, with the aid of the relation 

the following equation: 

ijD -D - 1 ijD - I('/"D jkD - D b D D)D--a ikU jku+la ijv+I'I' p,a jkU+ p, +W p,@ iV 

(1S.21) 
+ 1/1' v( w;5aij + {)aij)D iju 

+{:: g+w2(;5-I)@'+W({)g+(;5-I)b)+{)b} V=O. 

Equation (IS.21) can be further generalized by combining it with equation (IS.17). 
Letting rand s be arbitrary scalar functions on Q x IR x IR" we obtain, by adding 
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U(w(r + 1) + s) times equation (15.17) to equation (15.21), the equation 

- ajj Dji1D jtU + taij Di/j + 1< "" D p,ajt D jtU + D p,b + wD p,s)D /; 
(15.22) + ",'v(w(c5 + r+ I )aij + (~+ s)uij)Diju 

+ {~: 8 + w2(c5 + r)8 +w«~+s)8'+(c5 +r)b) +(~ +S)b} v=O. 

At this point it is convenient to write the principal coefficients uij in the form 

(15.23) 

where a~, cj E C 1 (.0 x R x (R" - {O}) and [a~] is a positive, symmetric matrix. 
Clearly the decomposition (15.2) with positive [a~] is a special case of (15.23). 
Furthermore the principal coefficients of any elliptic operator Q can be written in 
the form (15.23) by simply choosing a~ = aij and Cj = O. Indeed for our intended 
application to uniformly elliptic equations there is nothing to be gained by taking 
non-trivial Cj • However for the minimal surface operator, a decomposition of the 
form (15.23) with the matrix [a~] proportional to the identity matrix is crucial for 
our derivation of global gradient bounds. 

Returning to equation (15.22) we now substitute the relation (15.23) to obtain 

(15.24) 

-a~DjtuDjtu + taij Dijv + H "" D p,aik Djtu - ""cPJi 
+v[w(c5+r+ I)+~+s+ I]c j + Dp,b+wDp,s}D/; 

+ ""v[w(b + r + l)a~ + (~+ s)a~]Djju 

+{ ~: 8' +w2(c5 + r)8 +w[(~ +s)8 +(b + r)b] + (~+ S)b} v =0. 

By Cauchy's inequality (7.6) we can estimate 

""v[w(b + r + l)a~ + (~ + s)a~]Diju 

~A.. L I Dijul 2 + ;; L l[w(c5+r+ 1)+~+s]a~12 
• 

~ a~DjkUDjtu + ;; L I [w(c5 +r + I) +~ +s]a~12 
• 

where A.. denotes the minimum eigenvalue of the matrix [a~]. Hence by substitu
tion into (15.24) we finally obtain the inequality 

(15.25) aijDji+Bpjv+2G8'v~0 

where the coefficients Bj and G are given by 

(15.26) 

Bj= ",'(Dp,ajkDjkU- Cpjju) + V[w(b + r+ I) + ~+s+ l]c j 

+ Dp,b+wDp,s 

w' 2 
G= "" +aw +/1w+y, 
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and 

a=~ «8+r)&+ ~: L 1(8+r+ l)a~12), 

( \S.27) P=~ «15 + s)& + (c5 + r)b + 12~12 [(c5+ r + \ )a~] [(15 + s)a~]), 
o A. 

y=~ [~: L l(b+s)a~12 +(c5+s)b 1 
In order to get a global gradient bound for the solution u, we need to choose the 
functions t/!, rand s in such a way that 

(IS.2S) G~O for x E U, and 1 Du(x)1 ~L 

for sufficiently large L. For, if (IS.2S) is satisfied, it follows from the weak maxi
mum principle, Theorem 3.1, that 

sup v=sup V, (U L = {x E U IIDu(x)1 ~L}), 
UL iJU,. 

and hence 

(IS.29) {[max t/!'J } sup IDul ~ max -. -, sup IDul, L , 
U mm'" iJU 

We digress here momentarily to remark that the estimate (IS.29) would remain 
valid if the solufion u is only assumed to lie in C2(U). For, in this case the equation 
(IS.IS) would continue to hold in the weak form 

(IS.30) 

f y/djDj/tuDj/tu dx+t f djDJiDjY/ dx 
U U 

+t f {DpjjD jV-(t/!\2 (t/!'Dp,ajltDj/tu+ Dp;b+ WDpl)DjV} Y/ dx 
U 

-f {t/!' c5djDJi+c5b-w(b+w&)+ :: &} vY/ dx=O 
U 

for all y/~O, E CMU) 

(see Sections 13.3 or 14.1). Applying the same argument as above for the case 
u E C3(U) we deduce from (IS.30) the weak form of inequality (1S.2S), namely 

(IS.31) f {aijDjvDjy/+ (Dpjj- Bj)Djvy/-2G&vy/} dx ~O 
U 



366 15. Global and Interior Gradient Bounds 

for all non-negative" E Cb(Q). The estimate (15.29) is then a consequence of the 
weak maximum principle, Theorem 8.1. 

Let us now consider conditions on the coefficients of Q which will ensure that 
inequality (15.28) is satisfied for some 1/1, rand s. In order to guarantee that (x, p and 
yare bounded from above, we impose the structure conditions 

(15.32) ~ .. .. [ft:iJ (0 + r + l)a~, (<5 + s)a~ = 0 -Ip-I- as Ipl-+ 00 

b8, <58, (c5 + r)b, (<5 + s)b :s::; 0(8) as I p I -+ 00. 

Here the limit behavior is understood to be uniform for (x, z) E Q x Em, M]. We 
now define the numbers 

(15.33) a, b, c = lim sup (x, p, Y 
Ipl-co Ux[m.M) 

so that inequality (15.28) is implied by the Riccati differential inequality 

(15.34) 

holding on the interval Em, M] for some positive number e. To get from the 
solution X to our auxiliary function 1/1 we use the relation X = W 0 1/1 - I. It turns out 
that inequality ( 15.34) cannot be solved for arbitrary a, band c unless osc U = M - m 

U 

is sufficiently small (see Problem 15.1). The inequality can be solved however 

when either a:S::;O, c:S::;O or b:s::; -2~. Let us consider now the two important 

cases a:S::;O, c:S::;O; (the case b:s::; -2~ is left to the reader in Problem 15.2). 
We simplify our calculations somewhat by setting cp(z) = 1/1' 0 I/I-I(Z). Then if X 
satisfies inequality (15.34) we can determine cp through the relation 

cp' 
-=X· 
cp 

(i) a:S::;O. If the strict inequality a<O holds, the quadratic equation 

ax2 +bx+c+e=0 

has a pO'sitive real root X = K, if e is chosen so that c + e > 0, in which case inequality 
(15.34) is solved by taking X = K. Consequently we obtain (log cp)' = K and hence we 
can choose 

If, on the other hand, a = 0, the inequality (15.34) can be solved by taking 

( )=Ic+e/ 2()bl+t)(M-z) 

X z /b/+e e 
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in which case we can choose 

<p(z)=exp _{ Ic+el e2I1bIH)(M-Zl}. 
2(lbl +e)2 

367 

(ii) c~O. If c<O we can take <p(z)=e"z for some K>O as in (i). If c=O, in
equality (15.34) can be solved, for sufficiently small e, by taking 

x(=)=eAfm -:- t ) where A =Ial + Ibl + I. 

In this case we can choose 

<p(z)=exp {-~ eAfm -:- t } 

Note that in the cases considered above <p is monotone increasing and hence in the 
estimate (15.29) we have max"" = <p(M), min"" = <p(m). 

The development of this section has accordingly led us to the establishment of 
the following theorem. 

Theorem 15.2. Let u E C2(Q) n Ct(Q) satisfy equation (15.1) in the bounded 
domain D. Suppose that the operator Q is elliptic in D and that there exist scalar 
multipliers rand s such that the structure conditions ( 15.32) are fulfilled together with 
either of the conditions a ~ 0 or C~ 0 (the numbers a and c being defined by (15.27) and 
(15.33». Then we have the estimate 

( 15.35) sup IDul~C 

where C depends on the quantities in (15.32), osc u and sup IDul. 
u au 

We illustrate the application of Theorem 15.2 by considering some important 
special cases. 

(i) Uniformly elliptic equations. If Q is uniformly elliptic in D, that is aii = O(A) 
as Ip I -+ 00, and if also the function b = 0(&) = 0(AlpI2) as Ipl -+ 00, then condi
tions (15.32) with a~ = aii, Ci = 0, r = s = 0 are often referred to as natural 
conditions (see [LV 4]). If we restrict these conditions slightly by requiring that 

(15.36) 

then c~O, and hence C2(Q) solutions of the equation Qu=O satisfy an apriori 
global gradient bound. We shall show in the next section that the restriction (15.36) 
is unnecessary. 

(ii) Presc;ribed mean curvature equation. By writing equation (10.7) in the form 

(15.37) 
D.uD.u I 2 

Au- (1 ~ID~12) Dip-nH(x)" I +IDul =0 
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where HE CI(Q) we can choose 

p 
(,-=---'-, 
, I +jpj2 r= -I and s=O 

so that by calculation we have 

2 
a=-I+--2 , 

I+jpj 

and hence 

a= -I, b=O, c=n sup jDHj. 
Q 

Consequently, a global gradient bound holds for C2(Q) solutions by virtue of the 
case a < 0 of Theorem 15.2. In particular, we can deduce using () 5.29) the estimate 

() S.38) sup jDuj:::; ('I + ('2n sup jHj + c3 sup jDuj exp (c4n sup jDHj osc u) 
Q Q oQ Q Q 

where ('I' ('2' c3 and ('4 are constants. 

(iii) Equations where a~ = Jij. As shown in the preceding section, if equation 
(1S.I) is the Euler-Lagrange equation of a multiple integral of the form (1S.3) or 
if the dimension n = 2, then we can take a~ = Jii. Using (IS.27) we obtain in these 
cases 

I . (r+ 1)2jpj2 
a=- «()+r)1ff +---, 

Iff 4 cff 

( IS.39) 
I (r+l)sjpj2 

p=- [(15+5)8 +«()+ r)b] +-2 -----;:-' 
8 @ 

I s2jpj2 
Y=-;j (b+s)b+"4S· 

Choosing the particular values r= -I, s=O we have 

I 
a =1, «()- 1)1, 

I 
P = S [b~ + ( () - I)b]. 

I 
Y=i Jb. 



15.3. Interior Gradient Bounds 369 

Note that the same formulae arise whenever 

since in these cases we have ba~=O. 

15.3. Interior Gradient Bounds 

An interior gradient bound for C2(0) solutions of equation (15.1) can also be 
deduced from equation (15.24). Let B= BR(y) be a ball strictly lying in U and let" 
be a function in C2(B) such that O~,,~ I in B, ,,=0 on aB, '1(y) = I and '1>0 
in B. A typical example of such a function, which we shall use below, is given by 

(15.40) ( Ix - YI2)P 
,,(x) = 1 - R2 ' fJ ~ 1. 

We now consider the function w defined by 

Clearly WE C'(B), w(y)=ii(y), w=O on iJB, and the derivatives ofw are given by 

Djw = "Djii + iiDj" 
Djjw="Dijii+ DjiiDj,,+ Dj'1Di+ iiDjj'1. 

Note that to guarantee the existence of the second derivatives Djjw we require that 
U E C3(0); this restriction can however be avoided by utilizing the weak form of 
equation (15.24). Multiplying equation (15.24) by 'I and substituting for ii, we now 
obtain the equation 

(15.41) 

where Bj is given by (15.26). At this point we can introduce further scalar multi
pliers t j' i = I, ... , n . For, if t j' i = I, ... , n, are arbitrary scalar functions on 
U x R x R" we can write, using equation ( 15.17) and setting cj = D p;' 
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B;= t/I'[(i\+ tj)ajkDjkU - CpijU] + V[W(b + r+ 1)+ (15 +s+ 1 )]c; 

+(i\ + lJb +w«("1j + tj)S 

=t/I'(Oi+li)a!:DjkU-~'1 Dl1(Ci+ti)cj+ (~~2 (Oi+ti)CPjW 

+ v[w(b+r+ 1)+(t5+s+ 1 )]ei+(oi+ li)b+w(Oi+ ty·. 

Hence by substitution into equation (15.41), we have 

(15.42) 

where 

(15.43) 

and 

ijD -D - 1 ijD 1 i'E D -'1a• ikU jku+la ijW+ID; iW 

+ t/I'W(W(b + r+ i)+(t5+s)+(g+ t)]a~DijU 

+ {~: S +w2(b+r)S +w[(t5+g+s+ t)S +(i5+r)b 

v -
- 2'1 Di'1(i5+r+ l)ea +(t5+t5+s+t)b 

1 
S = - 2'1 D;'1 oj> 

t. 
1= --1.. D.'1 

2'1 I 

We then obtain, instead of inequality (15.25), the inequality 

(15.44) 

where G is given by 

(15.45) 
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and 

a=a, 

1 { IpI 2 
P=fJ+-;j -2;1 D j'1(o+r+ l)cj+(J +1)8 

+~: [(o+r+ l)a~][(J+l)a~]}, 
(15.46) y = y+.!. {1~12 L I(J + t)a~12 + (J + t)b 

cf 411.. 
V ~ 1 .' 

--2 Dj'1(~ + ~ + s + t + l)cj + "2 a') Dj'1 Dj'1 
'1 '1 

_~ aijD .... + IpI 2 [(~ + s)ajj ] [(J + t)d j ]}. 

2'1 IJ"' 2A. • • 

Unless there exist special relationships between the function '1 and the coefficients 
of Q, we need to add more structure conditions to ensure that the coefficients P 
and y behave similarly to fJ and }'. Let us therefore assume, in addition to the 
structure conditions (15.32), the conditions 

as Ipi ~ 00, 

(15.47) IpI2&A, Ipl6(oj + t j)8, Ipl6(oj + tj)b = 0(8) as Ipi ~ 00, 

Ip16(0 + r + l)c j , IpI6(~ + s + l)c j , Ip1 26(Oj + tj)cj = 0(cf/lpI2) 
as Ipi ~ 00, 

with i,j, k = 1, ... , n, for some 0 > O. As in (15.32), the limit behavior is understood 
to be uniform for (x, z) E (m, M). 

Using (15.47) and the function '1 given by (15.40), with fJ = 2/0, we can then 
estimate (for sufficiently large I Du I) 

where C depends on n and the quantities in (15.32) and (15.47). Consequently, 
applying the considerations of the preceding section we obtain, instead of (15.29), 
the estimate 

(15.48) 
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provided either a ~ 0, c ~ 0, b ~ - 2jM, or osc u is less than some constant 
BR(Y) 

depending on a, b, c. Moreover, we can clearly replace the ball B = BR(y) by any 
ball intersecting Q, and therefore obtain, for any y E Q, the same estimate with C 
depending in addition on sup I Du I. Note also that by invoking (15.30), rather than 

oO"B 

(15.18), the above considerations are also applicable to C2(Q) solutions. Therefore, 
we have the following estimate. 

Theorem 15.3. Let u E C 2(Q) satisfy (15.1) in the domain Q. Suppose that the oper
ator Q is elliptic in Q and that there exist scalar multipliers r, s, t;, i = 1, ... , n such 
that the structure conditions (15.32) and (15.47) are fulfilled. Then, if any of the con
ditions a ~ 0, c ~ 0, b ~ -2jM hold, (the numbers a, b, c being defined by (15.27) 
and (15.33)), we have the estimate 

(15.49) 

for any y E Q and B = BR(y), where C depends on the quantities in (15.32), (15.47), 
osc u and sup I Du I. If a, band c are arbitrary, the estimate (15.49) continues to hold 
B"U B"oU 
for sufficiently small R depending on a, b, c and the modulus of continuity of u at y. 

For uniformly elliptic equations, under the natural conditions, estimates for the 
moduli of continuity of solutions (and hence gradient estimates) follow from the 
considerations of Section 9.7. In fact, we have the following estimate which, in some 
sense, extends Corollary 9.25. 

Lemma 15.4. Let u E W 2 '"(Q) satisfy the inequality 

(15.50) 

in Q, where [he operator L, given by Lu = aiiDiju, satisfies (9.47), Jlo E ~ and 
f E L"(Q). Then,for any ball Bo = BRo(Y) c Q and R ~ Ro, we have 

(15.51) 

where C and ex depend only on n, AI A. and Jlo M; M = lulo; u. 

Proof. Let us suppose first that u ~ ° satisfies 

(15.52) 

in Q, where Jlo > 0, f ~ 0, and set 
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It follows then that 

Lw~ f 

in a, so that the weak Harnack inequality (Theorem 9.22) is applicable to w. But 
since 

the weak Harnack inequality (9.48) is satisfied also by u, with constant C depending 
in addition on 1l0M. The Holder estimate (15.51) then follows. 

Combining Theorem 15.3 and Lemma 15.4, we conclude both interior and 
global gradient bounds under the conditions 

(15.53) A, (5 + r + 1) aii, (15 + s) aii, Ipl6 (Ok + tk) aii = o (A.), 

b, Ipl6(ai + til b = O(A.lpI2), (5 + r) b, (15 + s) b ~ O(A.lpI2), 

as I p I --. 00, for some (J > O. 

Theorem 15.5. Let u E C2(a) satisfy (15.1) in the domain a and suppose that the 
operator Q is elliptic in a and satisfies the structure conditions (15.53), with multipliers 
r, s, t i , i = 1, ... , n. Then, for any point YEa, we have 

(15.54) 

where C depends on n, the quantities in (15.53), I u 10; a, and d y = dist (y, aU). IJ 
ij E C2(U) n C1(Q), ~e also have 

(15.55) I Du(y) I ~ C 

where C depends in addition on sup I Du I. 
ila 

15.4. Equations in Divergence F onn 

Let u E C2(U) satisfy the divergence form equation 

(15.56) Qu=div A(x, u, Du)+B(x, u, Du)=O 

in the domain a. Then it was shown in Section 13.1 that the derivatives D"u, k = 
I, ... , n satisfy the linear divergence form equations 

( 15.57) J<aiiDp"u+ f~)Di' dx=O 'riC E eMU), 
a 
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where 

( 15.58) 
aii(x) = D pjAi(X, U(X), Du(x», 

f~(x)=~kAi(x, u(x), DU(X»+~ik.B(x, U(X), Du(x», ~k=PkDz+ D Xk ' 

In order to proceed further we shall assume that Q is elliptic in the sense that 

( 15.59) 

for all e E IRn, (x, z, p) E 0 x R x IR", where r is some real number and v is a positive, 
non-increasing function on R A global gradient bound for non-uniformly elliptic 
Q can then be derived under the additional structure conditions 

(15.60) IpIDzA, DxA, B = o(lpl)(l + IplY as Ipl-+ 00. 

To show this we put M=sup lui, Ml =sup IDul and apply the maximum principle, 
u u 

Theorem 8.16, to equation (15.57) in the domain Q= [x E 0 IIDu(x)1 > Ml/2Jn:. 
We obtain thus 

(15.61) sup I DkUI ~sup I DkUI + C(2Jn) lrl ll(l + IDuD-rf~lIq 
b au 

for q>n, k= I, ... , n, where C=C(n. v(M). q. 1(1). Taking q=oo and using 
conditions (15.60). we therefore have 

(15.62) Ml = sup IDul~C (sup IDul +0'(M1» 
u au 

where O'(t) = o(t) as t -+ 00. Consequently. an apriori estimate for M 1 follows. 

Theorem 15.6. Let u E C2(Q) satisfy equation (15.56) in the bounded domain 0 
and suppose that the structure conditions (15.59). (15.60) are fulfilled. Then we hare 
the estimate 

(15.63) sup IDul ~ C(I + sup IDul) 
n au 

where C depends on n, r, v(M) and the quantities in (15.60). 

Condition (15.60) requires that the coefficient b in equation (J 5.1) satisfies 
b = o(llpl) as Ipl-+ 00. In order to relax this condition we must either impose 
additional conditions on the coefficient matrix DpA such as uniform ellipticity or 
assume that the solution u vanishes on ao; (see Problems 15.4.15.5). Note that 
the existence of a global gradient bound is reduced. through the estimate (15.61). 
to the existence of suitable integral estimates for the functions (I + IDul) - rf~. 
Instead of pursuing global bounds any further, at this stage, we shall now turn to a 



15.4. Equations in Divergence Form 375 

consideration of interior gradient estimates for uniformly elliptic equations. Let 
us assume that the operator Q is uniformly elliptic in Q in the sense that 

(15.64) 

for all (x. z. p) E Q x IR x IR". where I" is a positive. non-decreasing function on R 
Henceforth we shall also assume that r> - I. in which case conditions (15.59). 
(15.64) imply respectively the inequalities 

(15.65) 

v 
p·A(x. =. p)-p·A(x. Z. O)~_lplt+2. 

r+1 

. . I" +t 
IAI(X.Z.p)-A'(X.Z.O)I~-(I+lpD' • i=I ..... n. 

r+1 

Finally we shall take. in place of (15.60). the more general condition 

( 15.66) 

for all (x. =. p) E Q x !R x IR". Conditions (15.59). (15.64). (\ 5.66) can be regarded 
as natural for divergence structure operators. The derivation of an apriori interior 
gradient bound under these conditions is accomplished in three stages: 

(i) Reduction to an U estimate. We replace the test function ( in (15.57) by 
{D"u and sum the resulting equations over k. Setting v = IDui l we obtain thus 

f{(;,ijDi"UDj"u dx+ f(!aijDjv+D"ufDDi{ dx+ f{f~DikU dx=O. 
U u u 

Hence by Young's inequality (7.6) we have 

(15.67) f (aijDjv+2DkUf~)Di{ dX~~ f {A. -1 L (f~)2 dx 
U u 

for all non-negative ( E q(Q). Therefore, setting 

v 

V= f (1 +jt)t dl, 

o 

we may write (15.67) as 

(\5.68) f('ijDi+2DkUfi>Di{~~ f {r 1 L (fD 2 dx. 
U u 

where 
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The interior estimate for weak subsolutions of linear equations, Theorem 8.17, is 
thus applicable to inequality (15.68). Hence, using (15.66), we have for any ball 
B2R=B2R(y)cD and q>n, the estimate 

sup ii~ C{R-II/21Iiill Ll(BlR) + 11(1 + I DulY +411 L"(BIR)} 

BR("J 

where C=C(n, v(M), Il(M), t, q, diam D), M= sup lui. Consequently for suffi-
BIR(") 

ciently large p we have 

(15.69) sup v~ C(n, v(M), Il(M), t, diam D, R- II f v'dx). 
BR(P) 

(ii) Reduction to a Holder estimate. We now need to utilize the weak form of 
equation (15.57), viz. 

(15.70) Q(u, lp)= f (Ai(x, u, Du)Dilp-B(x, u, Du)lp) dx=O Vlp E eMD). 

o 

From (15.65) we see that the function A satisfies inequalities 

IA(x, z, p)1 ~ Ilt(lzl)(l + Ipl)'+t 

p. A(x, z, p) ~ vt (lzl>lplt+ 2 - III (izl> 
(15.71) 

for (x, z, p) E D x IR x IR", where III and Vt are respectively positive non-decreasing 
and positive non-increasing functions depending on t, Il. v and sup IA(x. U, 0)1. 

o 
Let us substitute into (15.70) the test function 

lp=,,2[U-U(Y)] 

where" E e~(B2R)' B2R=B2R(y)cD. Using (15.66) and (15.71) we obtain thus 

VI f ,,2IDult+2 dX~lllf ,,2 dx 
o 0 

+Il f ,,2Iu(x)-u(y)l(1 + I Du!)' + 2 dx 
o 

+ 21lt fl"D11llu(x) - u(y)l(l + I Du!)'+ I dx 
o 

~Ilt S,,2 dx+4(1l+1l1)2tco(R) f ,,2(1 +IDul t+2) dx 
o 0 

+ Illco(R) f (1 + IDu!>'ID,,1 2 dx 
a 
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where 

w(R)=sup lu(x)-u(y)l. 
B2R 

Hence, if R is chosen small enough to ensure that 

we have 

(15.72) 

where C = C(J.L, J.L I , V I , t). Let us now replace the function J7 in (I 5.72) by 

J7V(P+I)/2, P>O, 

to obtain the estimate 

f J72IDuI2P+T+4 dx ~ C f {lDuI 2(P+ 1)(J72 +w(R)(1 + IDuI)TIDJ712) 

(15.73) Q Q 

To estimate the last term in the above inequality we choose 

C=J72VP 

in inequality (15.67). We obtain thus, using conditions (15.59), (15.64) and (15.66), 

pv f (1 + IDuI)TJ72vf1- I IDvI2 dx 
Q 

~ C f {(I +IDulYJ7vf1IDJ7IIDvl +0 + IDulY+ 3 

Q 

where C=C(J.L, v). Hence, by Young's inequality (7.6), 

f (1 + IDuI)TJ72vf1- IIDvl2 dx 
Q 

~C fo + IDuI)2f1+T + 2(J720 +IDuI)2+IDJ712) dx 
Q 
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where C= C(Jl, v, P). Consequently if w(R) is sufficiently small we obtain, by 
substitution into (15.73), 

:s:; C f (,,2(1 + IDuI)2(P + 1) + ID,,1 2(1 + IDuI)2P+t+ 2) dx 

a 

where C= C(Jl, v, p, T). Replacing" by ,,<2P+t+4)/2 and using Young's inequality 
(7.6), we then obtain 

f[,,(1 +IDul)]2P+t+4 dx:s:;C 

a 

where C= C(Jl, v, JlI' VI' p, T, sup ID"I). In particular, if" == 1 on BR(y) and 
ID"I :s:; 2/ R, it follows that, for any p? I, 

(15.74) f (1 + IDul)P dx:S:; C 
BR(Y) 

where C= C(Jl, v, JlI ' VI' p, T, R- I). Combining the estimates (15.69) and (15.74) 
we obtain for any ball Bo= BRo(Y) cQ and 0< a< 1 the estimate 

(15.75) IDu(y)I~C 

where C=C(n, T, v, Jl, VI' JlI' a, [u]~.Y) and 

[] _ lu(x)- u(y)l. 
u 2.Y-S~!, Ix- Yl2 ' 

that is, the derivation of an interior gradient bound is reduced to the existence of 
an interior Holder estimate for u. We note here that an estimate of the modulus of 
continuity of u would in fact suffice to complete the proof. Moreover, if the 
structure conditions (15.66) were strengthened so that g = o( 1 p It+ 2) as 1 p 1 ---+ 00, the 
above considerations yield an interior gradient bound independent of the modulus 
of continuity of u. In this case we can also weaken the uniform ellipticity of Q to 
allow DpjA i = O(lplt+")aslpl---+ oo,i,j = I, ... , n, where 0" < 1 (see Problem 15.6). 

(iii) A Holder estimate for weak solutions of equation (15.66). Let us write 
inequalities (15.71) together with the condition on Bin (15.66) in the form 

(15.76) 

IA(x, z, p)1 ~ aolpl,"-I + X,"-I 

p·A(x, z,p)?volpl'"-x'" 

IB(x, z,p)l:s:;bolplm+xm 
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where m=r+2> 1 and ao• boo Vo and X are positive constants depending possibly 
on M=sup lui. Then we have the following Holder estimate. 

n 

Theorem 15.7. Let u E Ct(Q) be a weak solution of equation (r5.56) in the domain 
Q and suppose that Q satisfies the structure conditions (15.76). Then for any ball 
Bo = BRo(Y) c Q and R ~ Ro we have the estimate 

(15.77) osc u~C(1 +R~aMo)Ra 
BR(Y) 

where C= C(n, 00' bo, vo, X, Ro, m, M 0) and rx = rx(n, 00' bo' vo, m, M 0) are positive 
constants and Mo=sup lui. 

Bo 

Proof Theorem 15.7 can be derived by essentially the same method as used for 
Theorem 8.22 or alternatively by following the method described in Problem 8.6. 
We shall not present all the details here. The essential ingredient in our proof of 
Theorem 8.22 was the weak Harnack inequality Theorem 8.18. Setting 

we obtain for non-negative weak supersolutions of equation (15.56) the analogous 
weak Harnack inequality 

(15.78) R-n/PI!uli LP(B2R(Y))~ C( inf u+k) 
BR(Y) 

where C = C(n, (/0' ho, \'0' m, M 0' p) and l,;;;.p < n/(n - m) +. The proof of (15.78) 
can be modelled on that of Theorem 8.18 provided that in place of (8.48), we take 
as test functions. in the inequality Q(u, cp) ~ 0, 

and use the Sobolev inequality (7.26) with p = m instead of p = 2. The passage 
from the weak Harnack inequality to the Holder estimate (15.77) can be accom
plished according to the proof of Theorem 8.22. Note that the case where m> n 
can be handled directly from the Sobolev inequality, Theorem 7.17. 0 

Combining Theorem 15.7 with our previous estimate (15.75) we finally arrive 
at the following interior gradient estimate. 

Theorem 15.8. Let u E C2(Q) satisfy equation (15.57) in the domain Q and suppose 
that the structure conditions (15.60), (15.64) and (15.66) are fulfilled with r> - 1. 
Then we hm'e the estimate 

(15.79) IDu(y)I';;;' C 
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for any)' E Q, where e depends on n, T, v(Mo), J.l(Mo)' sup IA(x, u, 0)1, 
o 

M o' Mold and Mo= sup lui, d=dist (y, eQ). 

By applying an argument similar to the proof of Theorem 8.29, we can con
clude from the interior estimate (15.79) (and the boundary Lipschitz estimate, 
Theorem 14.1) the following global estimate. 

Theorem 15.9. Let u E C 2 (Q) n CO (D) satisfy equation (15.57) in the bounded 
domain Q and suppose that the structure conditions (15.60), (15.64) and (15.66) are 
fulfilled with T > - 1. Assume also that Q satisfies a uniform exterior sphere condi
tion and that u = cp on oQ for cp E e 2 (D). Then we have the estimate 

(15.80) suplDul ~ C 
Q 

where C depends on n, T, v(M), J.l(M), sup IA(x, u, 0), oQ, Icpb and M = sup lui. 
Q Q 

15.5. Selected Existence Theorems 

It is not feasible to present here a comprehensive account of existence theorems for 
the classical Dirichlet problem that follow by combination of the results of Chapters 
10, 13, 14 and 15. Instead we shall present a selection of results which hopefully will 
serve as an illustration of the scope of the theory. 

(i) Uniformly elliptic equations in the general form (15.1). We assume the 
structure conditions 

(15.81) 

aij, Jdi = O(A), 

baij = O(A), 

b = O(AlpI2) 

Jb ~ O(AlpI2) 

bb ~ 0(AlpI2), 

as Ip I ~ 00, uniformly for x E Q and bounded z. Then we have, by Theorems 10.3, 
13.8, 14.1, 15.2 and 15.5. 

Theorem 15.10. Let Q be a bounded domain in IR" and suppose that the operator Q 
is elliptic in Q with coefficients aU, bE el(Q x IR x IR") satisfying the structure 
conditions (15.81) or (15.53) together with condition (10.10) (or (10.36)). Then, if 
oQ E e2. Y and cp E C 2 • Yen), 0 < y < 1, there exists a solution u E e2, Y(n) of the 
Dirichlet problem Qu = 0 in Q, u = cp on oQ. 

In general, if condition (10.10) (or (10.36)) is not assumed in the hypotheses of 
Theorem 15.10, then the Dirichlet problem Qu = 0 in Q, u = cp on oQ, is solvable 
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provided the family of solutions of the problems (13.42) is uniformly bounded in 
Q. Note that by Theorem lO.l the solution is unique if the coefficients aij are 
independent of z and the coefficient b satisfies Dzb ~ O. In this case, the conditions 
~aij = o(A),~b ~ o(AlpI2)in(15.81)wouid be implied by the conditions Dxaij = O(A.), 
Dx b = O(AlpI2). 

(ii) Uniformly-elliptic equation.l· in the diver.qence form (15.56). Here we assume 
the structure equations 

(15.82) 

IplT ~ O(A.) 

DpA = O(lplt), 
IpIDzA, DxA, B = O(lplt+2) 

as Ipl-+ 00. uniformly for x E Q and bounded z, with t> -I. We then have, by 
Theorems 10.9, 13.8, 14.1 and 15.9. 

Theorem 15.11. Let Q be a bounded domain in Ill" and suppose that the operator Q is 
elliptic inn with coefficients Ai E C 1.1(li x III x Ill"), i= I, ... , n, BE CY(Q x III x Ill"), 
O<~' < I, sati!ifying the structure conditions (15.82) together with the hypotheses 
of Theorem 10.9 jor (X = t + 2. Then, iJ aQ E C2• Y and q> E C2 • Y<'2), there exists a 
solution u E C2. Y(li) of the Dirichlet problem Qu = 0 in Q, u = q> on aQ. 

In order to conclude Theorem 15.11 from the estimates in Theorems lO.9, 14.1 
and 15.9. we take in Theorem 13.8 the family of Dirichlet problems given by 

(15.83) 
Q"u=div {uA+(I-u)(I +IDuI2)tl2Du} +uB=O, 

u=uq> on aQ, O~u~ 1. 

Note that the family given by ( 13.42) does not necessarily satisfy the hypotheses of 
Theorem lO.9. As in the previous case, if we do not assume the hypotheses of a 
specific maximum principle such as Theorem lO.9, then the Dirichlet problem 
Qu = 0 in Q, u = q> on aQ is solvable provided the solutions of a related family of 
problems such as (15.83) are uniformly bounded on Q. Note that, by Theorem lO.7, 
the solution of the problem Qu = 0, u = q> on aQ, is unique provided either the 
coefficients A are independent of z or the coefficient B is independent of p and also 
provided B is non-increasing in z. 

Equations of the form 

(15.84) Qu=aij(x, u)Dip+b(x, u, Du) 

with a'j E C1(Q x Ill) can be written in the divergence form (15.57) with 

Ai(x, z, p)=a (x, z)Pj, 

B(x. z,p)=b(x, z,p)-Dzaij(x, z)PiPj-Dx;dj(x, z)Pj. 
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Therefore, using Theorems 10.3, 13.8, 14.1 and 15.9, we have 

Theorem 15.12. Let D be a bounded domain in IR" and suppose that the operator Q 
given by (15.84) is elliptic in n with coefficients 

bE Om x IR x IR"), O<y< I, 

satisfying b = 0(lpI2) as Ipl- 00, uniformly for XE Dand bounded z, together with 
condition (10.10) (or 10.36». Then, if aD E c2 • Y and qJ E C2 • Y(Q), there exists a 
solution u E C2. Y(Q) of the Dirichlet problem Qu = 0 in D, u = qJ on aD. 

(iii) Non-uniformly elliptic equations in general domains. Let us now assume that 
the coefficients of equation (15.1) can be decomposed according to (15.23) such that 
the following structure conditions are fulfilled 

(15.85) 

Ipla ii, b = 0(8), 

Ja~ = O(JI..S/lpl), 

ba~ = o(JI..S/lpl), 

Jb ~ O(S), 

bb ~ o(S), 

as Ipl-+ 00, uniformly for xED and bounded z. Then, by combining Theorems 
10.3, 13.8, 14.1 and 15.2, we have 

Theorem 15.13. Let D be a bounded domain in IR" with coefficients d i , bE 
C1(n x IR x IR") satisfying the structure conditions (15.85) together with condition 
(10.10) (or (10.36». Then, if aDEC2.y and qJEC2'Y(Q), 0 < y < 1, there exists a 
solution u E C2. Y(Q) of the Dirichlet problem Qu = 0 in D, II = qJ on aD. 

Theorem 15.13 is clearly an extension of Theorem 15.10 and the remarks 
following the latter are also pertinent here. Note that when a decomposition of the 
form (15.2) is valid we have ba~ =0, and moreover if a~(p)=a~(p/lpl) we also have 
Ja~=O. 

(iv) Non-uniformly elliptic equations in convex domains. Let us now assume 
that the decomposition (15.2) is valid and 

(15.86) 
b = o(lpl A), 

bb ~ 0(b2/ I p 12 ff.), (ff. = trace [a~]), 

as I pi -+ 00, uniformly in XED and bounded z. Then from Theorems 13.8, 15.1 
and Corollary 14.5 we have 

Theorem 15.14. Let D be a uniformly convex domain in IR" and suppose that the 
operator Q is elliptic in n with coefficients aii, bE C1(Q x IR x R") satisfying the 
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structure conditions (15.86). Then, if au e c2,y and lp e c2,y(U), O<},< I, there 
exists a solution u e C2 , Y(U) of the Dirichlet problem Qu = 0 in U, u = lp on au, 
provided the family of c2 , Y(D) solutions of the problems 

(15.87) 
Q"u=aii(x, u, Du)DiP+ab(ax+(1-a)xo, au, Du)=O, 

u=alp on au, O~a~ I, 

is uniformly bounded in UJor some fixed Xo e U. 

An existence theorem for non-uniformly elliptic equations in the divergence 
form (15.57) follows in a similar fashion when Theorem 15.6 is used in place of 
Theorem 15.1 above. We assume that the coefficients Ai and B in (15.56) satisfy 
for some t e Ill, the conditions 

(15.88) 
IplT ~ O(A), 

IpIDzA, DxA, B = o(lplT+ 1) 

as Ipl- 00, uniformly for x e U and bounded z. Then we have 

Theorem 15.15. Let U be a uniformly convex domain in IIln and suppose that the 
operator Q is elliptic in 0 with coefficients Ai e C 1• Y(O x III x IIln ), i = I, ... , n, 
Be cY(Ox III x IIln), O<y< I, satisj)'ing the structure conditions (15.88). Then, 
if au e c2 , Y and lp e C2 • Y(O), there exists a solution u e C2• Y(O) of the Dirichlet 
problem Qu = 0 in U, u = lp on au, provided the family of c2 • Y(O) solutions of the 
problems (13.42) is uniform/.v bounded in Q. 

(v) Problems with boundary curvature conditions. Let us now consider operators 
that are decomposed according to both (14.43) and (15.23). In particular, we shall 
assume that 

aij(x, z, p) = Aa~(x, pllp\) + a~(x, z, p) 

(15.89) = a~(x, z, pllp\) + t[PiCJ{X, z, p)+ ci(x, z. p)p), 

b(x, z, p) = IpIAboo(x, z, pllp\) + bo(x, z, p) 

where a~ e C1(0 x B1(0», a~, boo e C1(0 x III x B1(0», i, j= I, ... , n, the matrices 
[a~], [a~] are non-negative and symmetric, and boo is non-increasing with respect 
to z. We shall impose the following structure conditions 

(15.90) 

~8 ~ 8 + 0(8), 
lJ8, lJb, (~ - l)bo ~ 0(8), 

lJai~ = O(jillpl), 

a~ = o(A) 

bo = o(lp\) 
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as Ipl- co, uniformly for x E Q and bounded z. Then we have, by Theorems 13.8, 
14.9 and 15.2, 

Theorem 15.16. Let Q be a bounded domain in IR" and suppose that the operator Q 
is elliptic in n with coefficients aij, bE C1(Q x IR x IR") satisfying the structure 
conditions (15.89), (15.90). Then, if aQ E C2.y, cp E C2'Y(Q), O<y< I, and the 
inequalities 

(15.91) $"- > -boo(y, cp(y), -v) 

hold at each point y E aQ, where v is the unit inner normal at y and $" + , $"-, given by 
(14.44), are non-negative, it/ollows that the Dirichlet problem Qu=O in Q, u=cp 
on cQ, is solvable provided the family of c2• Y(Q) solutions of the problems (13.42) is 
uniform(r bounded in Q. 

In order to permi t the non-strict inequalities in (15.91) we need to strengthen 
the structure conditions (15.90) so that 

(15.92) 

1>8 ::s:; 8 + 0(8), 

1, c58, c5b, 1>bo ::s:; 0(8), 

c5a~ = O(jillpl), 
a~ = 0(8/Ipl), 
bo = 0(8), 

as Ipl- co, uniformly for x E Q and bounded z. Then we have, by Theorems 13.8, 
14.6. 15.2, 

Theorem 15.17. Let Q be a bounded domain in IR" and suppose that the operator Q 
is elliptic in Q with coefficients di , bE C 1(Q x IR x IR") satisfying the structure 
conditions (15.89), (15.92). Then. if aQEC2.l', CPEC2';.(Q). O<y<I, and the 
inequalities 

( 15.93) 

hold at each poilll Y E aQ, it follows that the Dirichlet problem Qu = 0 in Q, u = cp on 
cQ. is solvable provided the family of C2 .1(D) solutions of the problems (13.42) is 
uniformly bounded in D. 

15.6. Existence Theorems for Continuous Boundary Values 

By means of the interior estimates. Theorems 15.3 and 15.6. certain of the existence 
theorems of the preceding section can be extended to hold when the function cp is 
only assumed to be continuous on aQ. The basic procedure is to approximate the 
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function ({J uniformly on cO by functions ({Jm E C2 • Y(O) and solve the Dirichlet 
problems, Qum=O in 0, u=({Jm on 00, for functions um E C 2'¥(D). The interior 
estimates, Theorems IS.3 and IS.8, on combination with the interior Holder 
derivative estimates. Theorems 13.1 or 13.3 and the Schauder interior estimate, 
Theorem 6.2. guarantee that a subsequence of the sequence {um } converges uni
formly on compact subsets of 0, together with its first and second derivatives, to a 
function U E C2 '¥(Q) satisfying Qu=O in O. The modulus of continuity estimates, 
Theorem 14.IS, ensure that U E CO(D) fl C2(Q) and moreover that U=({J on 00. 
For this procedure to work we also require that the sequence {um } be uniformly 
bounded, that is we require a maximum principle as in Chapter 10. Byapproxima
tion of the domain 0 by C 2 • ¥ domains we can also, through Theorem 14.IS, 
remove the restriction that 00 E C2 • ¥. Let us now state two existence theorems for 
general domains which can be obtained through this procedure. In Section 16.3, 
we shall consider analogous results for the minimal surface and prescribed mean 
curvature equations. 

Theorem 15.18. Let 0 be a bounded domain in ~n satisfying an exterior sphere 
condition at each point of the boundary iJO. Let Q be an elliptic operator 0 with 
coefficients aij, bE C 1(0 X ~ X ~n) satisfying the hypotheses of Theorems IS.3 (or 
IS.S) and 14.1 together with condition (10.10) (or (10.36». Then for any junction 
({J E CO(oO), there exists a solution u E COm) fl C2(0) of the Dirichlet problem 
Qu = 0 in 0, u = ({J on 00. 

For equations in the divergence form (lS.57), we have 

Theorem 15.19. Let 0 be a bounded domain in ~n satisfying an exterior sphere 
condition at each point of the boundary 00. Let Q be a divergence structure operator 
with coefficients AiECI·¥(OX~xW), i=l. ... ,n, BEC¥(OX~x~n), O<y<l, 
satisfying the hypotheses of Theorem IS.8, together with the hypotheses of Theorem 
10.9 for IX = l' + 2. Then, for any function ({J E CO(oO), there exists a solution u E 

CO(D) fl C2 • ¥(O) of the Dirichlet problem Qu = 0 in 0, U = ({J on 00. 

Notes 

The essential ideas in the maximum principle approach to gradient estimates, 
presented in Sections IS.I and IS.2, go back to Bernstein [BE 3, 6]. Bernstein's 
method was substantially developed by Ladyzhenskaya [LA] and Ladyzhenskaya 
and Vral'tseva [LV 2,4] to yield both global and interior gradient estimates for 
uniformly elliptic equations. Later Serrin ESE 3], by exploiting representations of 
the form (15.2), extended these results to encompass equations with similar features 
to the prescribed mean curvature equation (10.7). Theorems 15.2 and IS.3 are very 
close to results in [LV S, 6] (see also [IV 1,2]), although they, as well as Theorem 
IS.I, are formulated similarly to the statements in ESE 4]. Rather than use multi
pliers r, s, t, the authors in [LV 5, 6] point out that their hypotheses need only be 
satisfied by an operator equivalent to the given one. Our treatment differs from 
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those in [LV 5, 6] and [SE 4], in that we consider C2(.Q) solutions instead of C 3(U) 
solutions. Also, our proofs and results will continue to be valid for solutions in the 
space CO· 1(ll) n W2,2(.Q). 

The global gradient bound for solutions of divergence structure equations, 
Theorem 15.6, is due to Trudinger [TR 3] while the estimates of Theorems 15.7, 
15.8 and 15.9 for uniformly elliptic divergence structure equations are due to 
Ladyzhenskaya and V ral'tseva [LVI, 2]. Our proof of Theorem 15.8 differs in 
some aspects from that in [LV 2]. For further gradient estimates for non
uniformly elliptic, divergence structure equations, see [10], [OS 1,2]. Some ofthe 
existence theorems in Sections 15.5 and 15.6 are already formulated in the literature, 
see for example [LV 4], [SE 3]. The survey paper [ED] provides a clear account 
of various aspects of the execution of the existence procedure. We note also that 
many of the above existence theorems extend to Cl,:z boundary data, 0 < (X < 1; 
(see [LB 1]). 

Finally, we remark that Lemma 15.4 resolved positively the long standing 
problem as to whether the natural conditions (that is, the case (J = 1, r = s = ti = 0 
in (15.53» alone suffice for interior and global gradient bounds; (see [LV 7], 
[TR 12]). 

Problems 

15.1. Show that Theorem 15.2 continues to hold for positive a and c provided 
osc u is sufficiently small. 
a 

15.2. Show that Theorems 15.2 and 15.3 continue to hold for positive a and c 
provided b < - 2fo. 

15.3. Show that Theorem 15.6 continues to hold if the structure condition (15.60) 
is replaced by 

(15.94) 

where y=r+ I +(r+2)/n, provided r> -I and u=O on cU. 

15.4. Show that Theorem 15.6 continues to hold if the structure condition (15.60) 

is replaced by 

(15.95) 

where y=r+ I + lin, provided r~ -I and u=O on au. 
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15.5. Show that an interior gradient bound is valid for C2(Q) solutions of equation 
(15.56) provided that the structure conditions (15.60), 

(15.64)' DpA = O(lpl<+a), 

(15.66)' g = o(lpl<+2) 

hold for t> -I, (1< I. 

15.6. Consider the Dirichlet problem 

(15.96) t:Llu + g(Du) = J(x) in Q, u = 0 on oQ, 

ina bounded convex domain Q c [R", wheret: > O,g E C1([R"),f E C 1(Q), JIPI/g = 
0(1) as Ipl ~ 00, and g(O) ::::; J(x) for all x E Q. Using Theorem 15.1, together with 
linear barrier functions, deduce the unique solvability of (15.96), for sufficiently 
small t:, in the space Co, 1(Q) n C 2(Q). By letting t: ~ 0, show that there exists a 
CO, I(Q) solution of the first order Dirichlet problem 

(15.97) g(Du) = J(x) a.e. (D), u = 0 on oQ, 

and using suitable approximation show that the above conditions on J and g can 
be replaced by g E CO([R"), g ~ 00 as I p I ~ 00, J E L <Xl (Q), g(O) ::::; J(x) for all x E Q. 

Find a similar result for arbitrary domains satisfying exterior sphere conditions. 
In a certain sense the solution of (15.97) thus obtained is unique. (Cf. [LP 3, 5]). 



Chapter 16 

Equations of Mean Curvature Type 

In this chapter we focus attention on both the prescribed mean curvature equation, 

(16.1 ) 

and a related family of equations in two variables. Our main concern is with 
interior derivative estimates for solutions. We shall see that not only can interior 
gradient bounds be established for solutions of these equations but that also their 
non-linearity leads to strong second derivative estimates which distinguish them 
from uniformly elliptic equations such as Laplace's equation. In particular we shall 
derive an extension of the classical result of Bernstein that a C 2 ( 1R2) solution of the 
minimal surface equation in 1R2 must be a linear function (Theorem 16.12). 

The approach to interior gradient bounds, in this chapter, differs considerably 
from those in Chapter 15 (although it does have some features in common with the 
divergence structure case of Section 15.4). An interior gradient bound for a solution 
of equation (16.1), Theorem 16.5, is derived through a consideration of the tan
gential gradient and Laplace operators on the hypersurface in IR"+ 1 given by the 
graph of the solution u. The basic estimates on hypersurfaces are supplied in 
Section 16.1. 

The study of the general class of equations of prescribed mean curvature type in 
two variables is taken up in Section 16.4. Interior first and second derivative 
estimates (Theorems 16.20 and 16.21) arise through a treatment in Section 16.5 of 
quasiconformal mappings between surfaces in 1R 3 , which extends that of Section 
12.1. 

Sections 16.4 to 16.8 and a portion of Section 16.1 of this chapter were written 
in collaboration with L. M. Simon and they are essentially his contribution. 

16.l. Hypersurfaces in IR" + 1 

A subset 6 oflR"+ 1 is called a C k hypersurface in IR" + 1 iflocally 6 can be represented 
as the graph of a C k function over an open subset of [R". Our concern here is with 
C 2 hypersurfaces and for convenience we shall assume that 6 can be globally 
represented as the level surface of a C 2 function, that is, there exists an open subset 
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t1/t ofll~"+ I and a function 4> E C 2(0/I). with D4>#O on 0/1. such that 

(16.2) 6={XEo/Il4>(x)=O]. 

For the applications of this chapter. 6 will always be the graph of a function 
u E C 2(Q) where Q is a domain in ~". In this case we can take :f/J = Q x ~ and 

When 6 is given by (16.2) the normal v to S (in the direction of increasing 4». 
is given by 

D4> 
V=--' 

ID4>1 

For 9 E C I (:f/J). the tangential gradient {}g of 9 on S is defined by 

(16.4) lJg = Dg-(v, Dg)v. 

For any point y E 6. the tangential gradient {}g( y) is the projection of the gradient 
Dg( y) onto the tangent plane to S at y. Clearly we have 

(16.5) v'{}g=O 

and 

so that 

and 

Furthermore. it is clear that lJ.q only depends on the values of 9 on 6. For. suppose 
9 E C1(:f/J) satisfies g=g on S. Then D( g-g)=kv for some constant k and hence 

{)( g-g)=kv-kv=O. 

Next, by formula (14.102) in Section 14.6, we have 

[ D.4>] lJjVj = Dj ID'4>1 - vjvjDjvj 

= -nH-tvp)vl 2 

=-nH 
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where H denotes the mean curvature of e with respect to v. Hence we have the 
formula 

(16.9) 
1 

H=--6.v .. n I I 

The following lemma provides an integration by parts formula for the dif
ferential operator 6. 

Lemma 16.1. Letting dA denote the area element in e, we have 

(16.10) f 6gdA= -n f gHvdA 
6 6 

for all 9 E CJ(c:fI). 

Proof We shall establish formula (16.10) for the case where e is the graph of a 
C 2 function. The general case then follows by means of a partition of unity. 
Accordingly, let us assume that ~ is given by (16.3) so that at points (x, u(x» E e, 
we have 

V.= _ DiU, 
I V 

i= 1, ... , n, 

(16.11) v + 1 =-, 
n V 

and 

dA=v dx, 

where 

Defining gEe 1 (c:fI) by 

g(x, xn + 1)= g(X, U(X», 

we obviously have g=g on e and hence 6g=6g. Therefore, for i~n, 

f 6,gdA= f 6i g dA 
6 6 

= f (Dig-vivjDjg)vdx 
a 
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= - f g{ Djv- JI VPj(VjV) +nVHVj} dx by (16.11), 
u 

=-n fgHvjvdx- fg(.t VjDjp+DjV)dX 
u u )-1 

6 

= -n f gHvjv dx by (16.11). 
u 

For i=n+ I, we have 

f bn + 19 dA= f bn + Ig dA 
6 6 

=- fV n +1 t vppvdx 
U j=1 

=-nfgHdx 
u 

= -n f 9Hvn+1 dA. 0 
6 
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Note that the case i= n+ I in Lemma 16.1 is equivalent to the integral form of 
the prescribed mean curvature equation. 

For 9 E C 2(t.fI), the Laplacian (or Laplace-Beltrami operator) of 9 on I:) is defined 
by 

(16.12) 

From the integration by parts formula (16.10) and (16.5) we have 

(16.13) f cp Li9 dA = f 9 Licp dA = f - 159. bcp dA 
666 

for all cp E C~(t.fI). 
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We proceed now to derive some important inequalities involving the operators 
band ,1 on 6. These inequalities will include useful extensions of the mean value 
inequalities, Theorem 2.1, and the potential representation, Lemma 7.14, to 
hypersurfaces in R"+I. If y is a point on 6, r=lx-YI and I/IE C 2(R) we have, 
by calculation, 

(16.14) L11/1(r)=--+ ---- (r2 -Iv.(x.-y.W)+-- Hv.(x.- y.) 
nl/l '(r) [I/I"(r) 1/1 '(r)] nl/l '(r) 

r r2 r3 I I I r I I I 

since, by (16.6), 

In particular, let X be a non-negative, non-increasing function in C1(R) with 
support in the interval ( - 00, I) and set 

00 

I/I(r) = f rx(r/p) dr 

where O<p<R and the ball BR(Y)cOU. We then have by (16.14) 

(16.15) 

L11/1(r) = - {nx(r/p) + rx'(r/p)lbrI2 /p + nx(r/p)Hv· (x - y)} 

= pn+ I D p[p-nX(r!p)] + rX'(r/p)(I-lbrI1)/p- nx(r/p)Hv· (x - y) 

::;; pn+ 1 Dp[p-"x(r/p)] -nx(r/p)Hv. (x - y). 

In the special case where 6 is a minimal surface, that is H == 0, inequality (16.15) 
reduces to 

(16.16) 

The relations (16.15), (16.16) are fundamental to our treatment of interior esti
mates. We illustrate their application by first considering the minimal surface case, 
H==O. Let g be a non-negative function in L 1(6) and suppose that 

(16.17) 
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for all non-negative qJ E C ~(~). By choosing qJ = '" in ( 16.17), we obtain immediately 
from (16.16) the inequality 

that is, the function Ix given by 

(16.18) 

is non-decreasing in p. Letting X. approximate the characteristic function of the 
interval ( - 'XJ, I), in an appropriate fashion, we obtain that the function I given 
by 

(16.19) J(p)=_I- f 9 dA 
wnpn 

S" Bpi}') 

is also non-decreasing. Since 

(16.20) lim I(p)=g(y) 
p-o 

for almost all (with respect to dA) Y E 6, we conclude the mean value inequality 

( 16.21) 

for almost all y E 6 with BR( y)c'VI. Let us call a function 9 E C 2 (1I) subharmonic 
(harmonic) on 6 if Ag;:::O(=O) on 6. Using (16.13), we thus have 

Lemma 16.2. Let 9 be a non-negatit'e, subharmonic function on a C2 minimal 
hypersurface 6. Thenfor any point y E 6 and ball BR(y) c ipt, the inequality (16.21) 
is valid. 

When 3 is a hyperplane, inequality (16.21) reduces to the mean value inequality 
for non-negative subharmonic functions in Euclidean space IRn. Note however that 
in this case we do not need to assume that 9 is non-negative. When 9 is a positive 
constant, we obtain from (16.21) the estimate 

(16.22) 

where A(S ('\ BR( y» denotes the area of 6 ('\ BR( y). Henceforth we shall write 
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6 R(y)=6 n BR(y) and generally abbreviate 6 R(y)=6R when there is no 
ambiguity. 

We turn our attention now to the case of a general hypersurface 6 and C l(CfI) 
function g. Although the procedure adopted above in the minimal surface case can 
be generalized, we shall instead proceed somewhat differently, thereby giving an 
alternative proof of Lemma 16.2. Let y be a point on 6 and suppose that the ball 
BR(Y)cCfI. Let X be a non-negative, non-increasing function in C 1[O, (0) with 
support in the interval [0, R]. Defining t/I E C 2(CfI) by 

ao 

t/I(r) = f rx(r) dr, 

we have, by (16.15), 

(16.23) 
11t/1(r) = - {nx(r)+ rx'(r)lbrI 2 + nx(r)Hv· (x - y)} 

= -(nx(r) + rx '(r» + rx'(r)(1-lbrI 2 )-nx(r)Hv· (x - y). 

Therefore, substituting into (16.13), we obtain 

f (nx(r) + rx'(r»g dA - f rx'(r)(1-lbrI2)g dA 
6 6 

(16.24) 
= -n f x(r)gHv·(x-y) dA+ f bt/l·bg dA. 

6 6 

If we further restrict X so that 

where 0 < e < R, we can write the above relation as 

n(e-n_R-n) f gdA + f (nx(r)+rx'(r»g dA 

6. 6ft -6. 

(16.25) - f rx'(r)(1-lbrI2)g dA 
6 ft -6. 

=-n f x(r)gHv·(x-y)dA+ f bt/l·bgdA. 
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The form of (16.25) suggests that we should choose X so that nx{r) + rx '(r) = con
stant in the interval [E, R). Accordingly, let us define a function X. by 

{

E- n_ R-n for O~r <E, 

x.(r)= r-n_R- n forE~r<R, 

o for r~ R. 

We cannot immediately replace X by X. in (16.25). However, this can be accom
plished by replacing X by a sequence {X m } of non-negative, non-increasing functions 
in C 1 [0, 00 ), with support in [0, R) and uniformly bounded derivatives. By further 
requiring that {Xm } converges uniformly to X. and that the sequence of derivatives 
{X~} converges pointwise to the function 

forO~r<E, 

for E~r<R, 

for r~R, 

we can conclude, from (16.25), 

(E- n_ R- n) f 9 dA + f gr- n(1-I<>rI 2 ) dA 

5. 6R-6. 

(16.26) 

-f g(r-n-R-n)Hv.(X-y)dA+~ f <>t/I.(r)·<>gdA, 

6R-6. 6R 

where 

R 

t/I.(r) = f rx.("r) dr. 

Letting E tend to zero, we thus have 

(16.27) =_I_n f gdA-~ f g(r-n-R-n)Hv·(x-y)dA 
wnR wn 

ISR 6 R 

+ _1- f <>t/I(r)·<>g dA, 
nWn 6R 
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where 

R 

I/I(r) = fr(r-n-R-n) dr. 

Lemma 16.2 is now an immediate consequence of the identities (I 6.27) and (16.13). 
Using the inequality 

( 16.28) 
IHv.(x- y)1 ~r-2Iv·(x- y)1 2 +iH2r2 

= l-lc5rI2+iH2r2 

we can deduce. from ( 16.27). the estimate 

(16.29) 

Thus we have proved the following generalization of Lemma 16.2. 

Lemma 16.3. Let 9 be a non-negative/unction in Cl(~). Then/or any point)' E 6 
and ball BR ( y)c~, the inequality (16.29) is valid. 

The derivation of the interior gradient bound in the following section will be 
based upon Lemma 16.3. Note that for 9 E C 2 (.:¥/) we can express the last term in 
(16.29) as 

__ 1_ f l/I(r),1g dA. 
nWn 

SR 

Further consequences of inequalities (16.26) and (16.29) will be required for the 
treatment of equations in two variables later in this chapter. In particular, if we set 
n = 2 in inequality (16.29), we obtain 

(16.30) g(Y)~n~2 f g(1 +iH2R2) dA + 21n f r(r- 2-R- 2)Ic5gl dA. 
SR SR 

Settingg= 1 in (16.30), we have the estimate 

(16.31) 
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where A(6R ) denotes the area of6R • Consequently, if6 isa compact hypersurface 
in ~3 (or more generally if ilIJ = ~3 and A(6R ) = O(R2) as R -+ 00), we have 

(16.32) 

Furthermore, one can show that equality holds in (16.32) if and only if Z is a 
sphere, [TR 9]. 
Next, defining I by (16.19), we obtain from (16.26) and ( 16.28) 

wn/(t:)=t:- n f 9 dA 
6, 

+~ f gH2r2(r-n-R-·)dA+~ f {j1/1,(r)·{jgdA. 
6R 6 R 

Hence, using Young's inequality (7.6), we obtain the estimate 

(16.33) 

Note that the last term in (16.33) can be replaced by 

1 f + - l/1(r)(-,1g) dA, 
W. 

6" 

when 9 E C 2 (ilIJ). Specializing inequality (16.33) to the case n = 2, g= I, we obtain 
the estimate 

(16.34) 

We next determine an estimate for the quantity 
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Choosing X as in the proof of Lemma \6.2 and using ( 16.13) and (16.5) we have 

Dp[fx(r/p)gl£5rI2 dAJ=~ f X(r/p)[1 + Hv·(x-y)]g dA 
s Ps 

Hence as X approaches the characteristic function of the interval ( - co , I), we see 
that J( p) is well defined for all pE (0, R) and moreover that 

( 16.35) 

J(p)~ ~ f [nl gl( 1 + IHlr) + rl£5gl] dA 
PSP 

~ ~ S I gl dA + f (nlHgl + l£5gl) dA. 
sp Sp 

In particular, for g= I. we have 

( \6.36) 
~ \Op[ A~R) + f H2 dAJ by (16.34), 

SR 

ifn=2. 
Thepotentia/ type relations (16.27), (16.29) and (16.30) are somewhat analogous 

to Lemmas 7.14 and 7.16 in Chapter 7. Indeed, we shall now use (16.30) to derive 
an analogue of the Morrey estimate, Theorem 7.19, for two dimensional surfaces. 
The following lemma will be applied in Section 16.5 to conclude a Holder estimate 
for generalized quasiconformal mappings. 

Lemma 16.4. Let gE C 1(o/I), n=2 and suppose there exist constants K>O and 
p E (0, I) such that 

(16.37) f l£5gl dA~ Kp(p/R)fi 
sp(y) 

for all yE 6 R/4( y) and all p~ R/4. Then 

(16.38) sup I g(x)-g( Y)I~ CK(p/R)fJ {A (6/) + f H2 dA} 
XESp(Y) R S 

R 
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where C is a constant, and where S;(y) denotes the component of Sp(Y) which 
contains y. 

Proof We commence by writing (16.30) in the form 

(16.39) 

and defining, for p:!!;. R/4, 

gl = sup g, go= inf g. 
6"IJI) 6"IJI) 

If 

gl -go:!!;. 6P-' K(p/R)P, 

then Lemma 16.4 is established with C=6P-' by (16.34). If 

then we let N be the largest integer such that 

and we subdivide the interval [go' gl] into Npairwisedisjointintervals/l' 12 , ••• , IN 
of length ~6P-' K(p/R)P. For eachj= I, ... N, we then let I/Ij be a non-negative 
C'(R) function with support contained in Ij' max I/Ij= 1 and max I/Ij:!!;. fJ/2K(p/Rf. 
(It is clear that such a function exists, because length I j ~6p- 1 K(p/ R)P.) Since S!(y) 
is connected, we know that for eachj= I, ... N, there is a point xli) E S;(y) such 
that 1/1 j[ g(xUl )] = I. Then using (16.39) with xli) in place of y, p in place of Rand 
I/Ij 0 g in place of g, we obtain 

I P 

I:!!;.;t f I/IJ.(g)(P-2+H2/4)dA+Ja- 2 f 1c51/1 j ogldAda, 
6 .. lxli ') 0 6 .. lxlil) 

for all p:!!;. R/4. Consequently, using (16.37), we obtain 
p p 

f a- 2 f 1c51/1j ° gl dA da:!!;.pRP(2Kp/I)-' f a- 2 f lc5gl dA da 
o 6 .. lxl il ) 0 6 .. (xW) 

p 

:!!;.PRP(2Kp/I)-'KR-P J qP-I da 

o 
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Combining the last two inequalities then gives 

I~~ f t/J}g)(p~2+H2;4)dA+1· 
6 p IXC))) 

so that 

I ~~ f t/J}g)(p~2+H2/4) dA 
6 p lxti )) 

~~ f t/J}g)(p~2+H2/4)dA. 
62,.iyl 

Summing overj= I. .. " N. and noting that I t/Jj~ I. we then deduce 

N ~ ~ f ( p ~ 2 + H 2) dA 

62 p iYI 

~c{A(~R) + f H 2 dA} by (16.34) 
ISn 

and hence the estimate (16.38) follows. 0 

Remark. If the function 9 has compact support, we obtain. by letting R approach 
infinity in (16.27) and (16.29), the relations 

1 f(I-lbr I2 ) I y(y)+- 9 cA 
w r" 

" IS 

(16.40) 
1 fHV'(X- y) I f(X- y)·by 

=- qdA-- dA 
w r"' 1/W r" ' 

"IS " IS 

( ) ~ I f HZ z~"dA I f(x-y).b9 d4 9 y ",- 9 r -- ,"to 

4w IlW r" 
"6 "6 

These inequalities can be used to establish imbedding theorems of the Sobolev 
type (Problems 16.1,16.2). We remark that the Sobolev inequality, Theorem 7.10, 
has been extended to minimal hypersurfaces in R."+ 1 by Miranda [MD 1] and to 
arbitrary submanifolds by Allard [AA], Michael and Simon [MSI]. 
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16.2. Interior Gradient Bounds 

Let U be a domain in IRn and u a function in C 2(U). If 6 denotes the graph of u 
in IRn+ I, then the mean curvature (with respect to the upper normal) of 6, at the 
point x=(x', u(x'» E 6, is given by 

(16.41 ) 

The object of this section is to establish a bound for Du(x ') in terms of Hand 
dist (x', cU). We commence by writing the relation (16.41) in the integral form 

( 16.42) f(v.Dcp-nHcp) dx'=O 
u 

for all cp E Cci(U). Replacing cp by DkCP, k = I, ... , n, and integrating by parts, we 
obtain 

(16.43) f(Dkv.Dcp-nDkHcp) dx'=O 
u 

for all cp E C~(U) (cf. equation (13.3». In (16.43) and henceforth we assume that 
HE C I(U). Now let us replace cp in (16.43) by vkCP where cp E C~(U). Then we obtain 
the equation 

(16.44) f DkvpjVkCP dx' + f(VkDkVjDjcp-nv,PkHcp) dx'=O 
u u 

for all cp E Cci(U). By calculation we have 

Vk 
vkDkVj= -r; (!Jij-vjvj)Djku 

= -V(!Jjj-VjV)DjO) 

=-v!JjVn + 1 

by (15.4), i = 1, ... , n. Hence, by means offormula (14.104) we can write the above 
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relation as 

( 16.45) 

where 

n n+1 

C(j'2 = L Djv)D)vj= L (b jV)2 
j,)=1 j,)=1 

Next, let us set ilIl= Q x ~ and suppose that cP E c~(-'II), By replacing cP in (16.45) 
by the function 

cp(x', xn+ I)=CP(X', u(x'», 

and using the relations 

n+t n+t n 

L bjvn+1bjcp= L bjvn+1bjcp= L bjvn+IDjcp, 
j= 1 j= 1 j= 1 

we can therefore conclude from (16.45) the identity 

(16.46) f(~2Vn+ tcp-bjvn+ IbjCP +nbn+ IHcp) dA =0 
6 

for all cP E Cd (ilII). Note that the functions v and H in (16.46) are independent of 
xn+ I' Also, in (16.46) and in the remainder of this section, we follow the summation 
convention that repeated indices indicate summation from I to n + 1. Defining the 
function w by 

(16.47) w = log v = -log v n + 1 ' 

we obtain, by replacing cP by <(Jt' in (16.46), the inequality 

(16.48) i (bw'b<{J+lbwI2<{J-nv'DH<{J)dA~O 
'" 

for all non-negative <(J E cd(W). Inequality (16.48) is the weak form of the inequality 

(16.49) Llw ~ Ibwl 2 - nv' DH. 

In particular, if 6 is a minimal surface, that is, the function u satisfies the minimal 
surface equation in Q, we see that w is weakly subharmonic on 6 and hence Lemma 
16.2 is applicable to w. In the general case, we can apply Lemma 16.3 to obtain, for 
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any point y' E Q, 

w(.r,)~-I-n f wdA+-I- f wH 2 r 2(r- n -R- n)dA 
wnR 4wn 

6R(Y) 6R(Y) 

(16.50) 

+ ~ f '" (r) v . D H dA 
n a.(y) 

provided R<dist (y', on), y=(y'. u(y'» and", is given by (16.27). Setting 

(16.51 ) 
Ho = sup IHI, 

D 

HI = sup (v' DH)+ ~ sup IDHI, 
D D 

we have from (16.50) 

(16.52) 
R 

+!!~ fp( p - n - R - n)A( 6 ) dp (by Fubini's theorem) w p 
n 0 

403 

The estimation of w. and consequently Du. is thus reduced to the estimation of 

A(6p ) and f w dA for O<p~R. 
61' 
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Estimation of A(6p ). 

Let us assume that 3R<dist (y', aD) and also, without loss of generality, that 
y' =0 and u( y')=O. For p ~R, we define the function up by 

for u~p 

for -p~u~p 

for u~-p 

and substitute the test function 

into the integral identity (16.42), where '1 is a uniformly Lipschitz continuous 
function satisfying '1 = I for Ix'i <p, '1 =0 for Ix 'I> 2p and ID'11 ~ lip. Note that 
the identity (16.42) clearly holds for all <p E W~· 1(D) and hence for all uniformly 
Lipschitz continuous <p with support in Q. We obtain thus 

f IDul 2 d ' -- x ~p 
v 

f (ID'1I+nIHl'1) dx'. 
Ix'l.lul <p Ix'i < 2p 

Consequently 

(16.53) 

f vdx' 

~ f v dx' 
Ix'I.lul<p 

~ C(n){pn+ p f IHI'1 dX} 
Ix'i < 2p 

Estimation of f w dA. 
Sp 

Let us now substitute 
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into (16.42) where" is as above. We obtain thus 

f wlDul 2 d' 2 x ~ (! 
v f (w I D" I +" I Dw I + niH w" I) dx' . 

Ix'I.lul < Q Ix'i < 2/1.u > - /I 

In order to estimate f "IDwl dx', we replace cp by cpl in inequality (16.48) so that 

f cp21bwl 2 dA~ -2 f cp bw·bcp dA-n f cp 2v·DH dA 
s s s 

for all cp E C~(.Qx R). Using Cauchy's inequality (7,6), we obtain 

f cp21bwl 2 dA ~4 fl!5CPl2 dA +nHI f cp2 dA. 
S s s 

In particular, let us choose cp such that 

whereO~r~I,r=1 in(-p, sup u),r=00utside(-2p,p+ sup u),lr'I<2/p 
1~1<2p 1~1<2p 

and" is as above. We then have 

f cp21!5wl 2 dA~(8p-2+nHl)A($ n supp cpl. 
s 

Using (16.8), we can then conclude that 

f "IDwl dx' ~ f cpl!5wl dA 
'."1<2p.u>-p S 

~ (8p- 2 +nH y/2 A($ n supp cp) by Schwarz's inequality, 

f udx'. 
Ix'i < 2p. u> - 2p 

Since w~ v, we also have 

f U' dx'~ f vdx'. 
Ix'I<2p.u> -p Ix'l< 2p.u>-p 

It tlierefore only remains to estimate f v dx', and this we accomplish by taking 

cp=" max {u+:,p, O} 
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in (16.42), where '1= I for Ix'!<2p, '1=0 for Ix'I>3p and ID'1I~ I/p, We obtain 
accordingly 

f 
Ix'l< 2p,u> -2p Ix'i < 3p 

Combining the above estimates, we therefore have 

f \<t' dA ~ f wv dx' 

(16.54) 6p Ix'l, lui <p 

~C(n)p"( 1+ HoR)( 1+ HIR2)1/2( 1+ p-I sup u) 
a 

Our desired interior gradient bound now follows by combining the estimates 
(16.52) (16.53), (16.54) and exponentiating. 

Theorem 16.5. Let Q be a domain in IR" and u a function in C 2(Q). Then, for any 
point y' E Q, we have the estimate 

(16.55) IDu(Y')I~CI exp [C2 sup (u-u(y'»/d), 
a 

where d=dist (y', aQ) and where C I = C1(n, dHo' d 2 HI)' C2 = C2(n, dHo' d 2 HI)' 
(Ho and HI being given by (16,51 ». 

As an immediate consequence of Theorem 16,5, we have the following interior 
estimate for non-negative functions. 

Corollary 16.6. Let Q be a domain in IR" and u a non-negatil'e function in C 2(Q). 

Thenfor any point Y E Q, we have the estimate 

(16.56) 

where C 1 , C 2 and dare as in Theorem 16.5. 

The exponential form of the estimates (16.55) and (16.56) is interesting in that it 
cannot be improved, This is evidenced in the case of two dimensional minimal 
surfaces by an example in [FN 4]. In the following section, we shall apply Theorem 
16,5 to the Dirichlet problem, with continuous boundary values, for the minimal 
surface and prescribed mean curvature equations. A further application to the 
minimal surface equation is treated by Problem 16.4. Let us conclude this section 
by noting the interior estimates for higher order derivatives which now follow 
from Theorem 16.5, the Holder estimate Theorem 12.1 and the Schauder interior 
estimates Theorem 6.2 and Problem 6.1. 



16.3. Application to the Dirichlet Problem 407 

Corollary 16.7. Let Q be a domain in !R" and u afunction in C 2(Q) whose graph has 
mean curvature HE Ck(Q), k?: I. Then u E C k + l(Q) and for any point y E Q, and 
multi-index fJ, IfJl = k + I, 

( 16.57) l[)Pu( y)l:::::; C 

where C=C(n, k, IHlu1 , d, sup lui), d=dist (y, oQ). 

16.3. Application to the Dirichlet Problem 

In this section we study the solvability of the Dirichlet problem with continuous 
boundary data for both the minimal surface and prescribed mean curvature equa
tions. For the minimal surface equation we have the following extension of 
Theorem 14.14. 

Theorem 16.8. Let Q be a bounded C 2 domain in !R". Then the Dirichlet problem 
9Ru =0 in Q, u = <P on oQ, is sO!z'£Ible for arbitwry <P E CO(oQ) if and only if the 
mean curvature of the boundary oQ is everywhere non-negative. 

Proof Let us assume initially that oQ E C 2 ., for some 0:>0 and that the mean 
curvature of oQ is everywhere non-negative. Let I <Pm] be a sequence of functions in 
C 2"(Q) which converges uniformly on iJQ to cpo By Theorem 14.14, the Dirichlet 
problems 9Jlum = 0 in Q, um = <Pm on oQ, are uniquely solvable in C 2 • '(Q) and from 
the comparison principle, Theorem 10.1, we have 

sup IUml -um21 :::::;sup l<Pml - <Pm21- 0 as mt' m 2 - 00. 
Q oQ 

Consequently the sequence {um} converges uniformly on Q to some function 
UE Co(m with u=<p on iJQ. Applying Corollary 16.7, together with Arzela's 
theorem we then obtain u E C 2(Q) and 9Jlu=O in Q. The result for C 2 domains Q 

follows by approximation of Q by C 2., domains. The non-existence part of Theorem 
16.8 is an immediate consequence of Theorem 14.14. 0 

Existence results for the inhomogeneous equation (16.1) depend on the 
establishment of an appropriate maximum principle for solutions. By combining 
Theorem 13.8, Corollary 14.8 and Theorem 15.2, we first have the following basic 
result for smooth boundary data (see also Theorem 15.15). 

Theorem 16.9. Let Q be a bounded domain in !R" with oQ E c 2., for some 0:, 
o<~< I, and let<p E C 2 "(Q). Let HE C1(Q) and suppose that the mean curvature of 
oQ, H', satisfies 

(16.58) 
, n 

H(y)?:-IH(y)1 
n-I 
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at each point y E cQ. Then there exists a unique function u E C 2"(Q) satisjl'in.q 
equation (16.1) in Q and u = cp on ?Q provided thefamily of solutions of the Dirichlet 
problems, 

(16.59) 

is uniformly bounded in Q. 

The necessity of the condition (16.58) is demonstrated by Corollary 14.13. Let us 
now determine a further necessary condition for solvability. Namely, by the integral 
form (16.42) of equation (16.1), we have for any" E C~(Q) 

If H" dxl ~ ~ flv, D"I dx 
fJ fJ 

I IDul f 
~- sup J ID"I dx 

11 fJ 1+ IDul 2 fJ 

and hence, writing 

we obtain 

( 16.60) If I (I-e) f 
H" dx ~~ ID"I dx, 

fJ fJ 

for all" E Cci(Q), and some eo >0. However, it is clear. from the proof of Theorem 
10.10, that condition (16.60) is also sufficient to ensure that an apriori estimate for 
sup lui holds for C 1m) solutions u of equation (16.1). Accordingly we have. from 

fJ 

Theorem 16.9, the following sharp existence theorem. 

Theorem 16.10. Let Q be a bounded domain in IRn I\'ith cQ E c2 ., for some rx. 
O<rx< I. and let cp E C 2.,(,O). Let HE CI(Q) satisfy (16.58) and (16.60). Then 
the Dirichlet problem 9)lu=nH(I +IDuI 2 )3/2, u=cp on cQ. is uniquely solvable 
for u E C 2"(Q). Furthermore. if we only assume that cp E Co(cQ). the problem is 
uniquely solvable for u E CO(Q) n C 2(Q). 

Note that condition (16.60) is implied by the condition 

(16.61) fIH±I" dx<wn • 
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(cf. (10.35». A more general condition than (16.61) is given in [GT 2]. The second 
assertion in Theorem 16.10 follows from the first assertion there in the same way 
that Theorem 16.8 follows from Theorem 14.14. Note that, if we only have u E 

CO(Q) (l C 2(Q), then the function H need only satisfy condition (16.60) with 
£0=0. 

When the function H is constant in Q it turns out that the condition (16.60) 
in Theorem 16.10 is redundant. To show this we assume that (\6.58) holds and let 
Q I be the subset of Q consisting of points having a unique closest point on cQ. 
An examination of the proofs of Lemmas 14.16 and 14.17 then shows that 

LJd~ -niH! 

in QI' where d(x)=dist (x, eQ). Let us now set, for u E CO(Q) (l C 2(Q), x E QI' 

ell" 
v(x) =sup lui + - (I - e- l1d(x), 

iJO fl 

where <5 = diam Q and fl = I + nl HI. It then follows that 

9Jlv= [ - fl+(1 +IDvI 2) LJd] el1("-d) 

~ - [fl + nlHI(\ + IDrI2)] el1("-d) 

~ -nIHI(1 +IDvI2)3i2, 

so that the function v is a supersolution of equation ( 16.1 ) in the open set Q I' Con
sequently if the function u satisfies (16.1) in Q, then, by the comparison principle, 
Theorem 10.1, w = u - v assumes a maximum value in Q either on oQ or in Q - Q l' 

Now let y be a point in Q-Q l and y be a straight line segment from y to cQ, 
normal to cQ. If the maximum value of w on ')' is taken on at y we must have 
Du( y);60 and also that the maximum value ofu on y occurs aty. This shows that w 

cannot take on a maximum value on Q - Q I' Therefore we obtain the estimate 

( 16.62) sup lui ~ sup lui + (ell" - 1)/ fl. 
o iJO 

Combining (16.62) with Theorem 16.9 and Corollary 14.13, we thus have the 
following existence theorem for the equation of constant mean curvature. 

Theorem 16.11. Let Q be a bounded C 2 domain in IRn. Then the Dirichlet problem 
9Jlu=nH(1 +lDuI 2)3 /2, u=cp on cQ, is solvable for constant H and arbitrary cp E 

C°(ilQ) if and only if the mean curvature of ?Q, H', satisfies H'~nIHlI(n-l) 
everywhere on cQ. 
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16.4. Equations in Two Independent Variables 

So far this chapter has been concerned with the prescribed mean curvature equation 
and, in particular, the minimal surface equation. Now, in the case of two indepen
dent variables, a somewhat more general class of equations will be considered. We 
shall consider equations of the form 

(16.63) Qu=aij(x, u, Du)Dip+b(x, u, Du)=O, 

where x=(x 1• x2 ) ED, D is a domain in ~2 and where dj , b. i, j= I, 2, denote 
given real-valued functions on D x ~ X ~2 with 

(16.64) J'2 (p·e)2 i j ( )J'J' [1J'12 (p.e)2] 
1 .. 1 -1+lpll:;:;:a X,Z,P"i"j:;:;:Y .. -1+lpll 

for all (x, z,p) E Dx ~ X ~2 and all e=(e1, e2 ) E ~2; and 

(16.65) 

for all (x, Z, p) E D x ~ X ~2. Here}' and p. denote fixed constants. 
Note that the minimal surface equation, 9Jlu = 0, can be written in the form 

(16.63) with 

aii(x Z p)=bij _ P;Pj , b=O' 
, , 1+lp12 ' 

in this case (16.64) and (16.65) hold with y= 1 and p.=O. More generally, any 
equation which arises as the non-parametric Euler equation of an elliptic parametric 
functional (see Appendix 16.8), is of the form (16.63), (16.64), (16.65). But quite 
apart from these examples, the class of equations (16.63), (16.64), (16.65), which we 
call the class of equations of mean curvature type, is both natural and interesting in 
that it is completely characterized as follows: 

Suppose u is a C 2 (D) function with graph 

6= {(x, z) E ~31 xED, z=u(x)}. 

Then there exist real-valued functions aij, b such that (16.63), (16.64), (16.65) hold 
if and only if the principal curvatures "I' "2 of 6 (see Section 14.6) are related at each 
point of 6 by an equation of the form 

with (XI' (X2' P satisfying 

(16.64)' 

(16.65)' 

1 :;:;: (Xi:;:;: y, i= 1,2. 

IPI:;:;: p.. 
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To demonstrate that this characterization is valid, we let d denote the distance 
function of 6 defined for X = (x, z) E Q x IR by setting d(X) = dist (X, 6) if z > u(x) 
and d(X) = -dist (X, 6) if z < u(x). Since d is C 2 (see Lemma 14.16) and 
d(x, u(x)) == 0, X E Q, we then have, by the chain rule, the identities 

and 

(16.66) 
Dijd(X)+ D iu(x)D3i(X) + Dp(x)D3id(X) + Dp(x)Dp(x)D33d(X) 

+ D 3d(X)DiP(x)=O, 

i,j= I, 2, where X=(x, u(x». Since D 3d(X)=1,-I, r=JI +IDu(x)1 2 , (16.63) then 
implies 

(16.67) 
3 

L a~(x)Dijd(X)+v-Ib*(x)=O, 
i,j= I 

where b*(x)=b(x, II(X), Du(x» and where the 3 x 3 matrix [a~(x)] is defined by 
setting a~(x)=aij(x, u(x), Du(x» for i,j= 1,2, and 

2 

a~(.x)=a;i(x)= L Dp(x)a~(x), i= I, 2, 
j= I 

2 
33 _ '\' D ij a* (x)- L. Diu(x) p(x)a*(x). 

i,j= I 

Note that these last relations are equivalent to 

3 3 

L a~(x)Vj= L a~(x)Vj=O, i= 1,2,3, 
j= I j= I 

where V= v- I (- DII(X), I) (= Dd(X» is the upward unit normal of6, Next we letq 
be the matrix of an isometry which transforms the coordinate system to a principal 

coordinate system at X (see Section 14,6), so that q'[Dijd(X)]q = diag ["I' "2,0], 
where" I' "2 are principal curvatures of 6 at X. Thus (16,67) can be written in the 
form (16.63)', with (XI' :X2 the first two elements or the leading diagonal ofq'[a~(x)]q 
and with {3= v-1b*(x), (16,65)' is now true by (16,65), To check (16,64)', we first 
note that 

3 

L a~(x)~j~j= 
i,j= 1 

2 

L a~(X)(~i+~3Djil(x»(~j+~3Dp(x», ~ E 1R 3 , 
i,j= I 
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and it then follows from (16.64) that 

3 

1~'12:;;; L a~(x)~i~j:;;;YI~'12, ~'=~-(V·~)V,V=v-I(-Du(x), I). 
i.j= 1 

(16.64)' now easily follows from this. 
To prove the converse implication we suppose that (16.63)', (16.64)', and 

(16.65)' hold at X = (x, u(x» E S, we let [a~(x)] = q diag [ai' a2' O]q', where q is as 
above, and we let b.(x)=vfj. Then (16.67) holds and consequently, since we still 
have the relations 

3 

L a~(x)vj=O' i= 1,2,3, 
j= 1 

an application of (16.66) yields 

2 

L a~(x)DiP+b.(x)=O. 
i.j= 1 

We then define, for i,j= 1,2, 

.. {a~(x) if z=u(x) and p=Du(x) 

a"J(x, z, p)= _ PRj . 
()ij 1 + I pl2 otherwIse, 

and 

b )_{b.(X) if z=u(x) and p=Du(x) 
(x,z,p - . o otherwIse. 

(16.63), (16.64), (16.65) are now easily checked. 
The treatment of equations of the form (16.63), (16.64), (16.65), to be given here, 

is in many respects analogous to the treatment given in Chapter 12 for uniformly 
elliptic equations in two independent variables; as in Chapter 12 we shall begin by 
considering quasiconformal maps, although here it will be necessary to consider 
mappings between surfaces in ~3 rather than mappings in the plane. Also, as in 
Chapter 12, the principal result is a Holder estimate for quasiconformal maps. A 
special consequence of this general estimate is a Holder estimate for the unit normal 
of the grapb of a solution u of (16.63), (16.64), (16.65). Using this estimate, apriori 
bounds for the principal curvatures of the graph of u and for the gradient of u will 
be established. One of the most striking results of the theory of equations of the 
form (16.63), (16.64), (16.65) is the following generalization of a classical theorem 
of Bernstein: 

Theorem 16.12. Let UE C2(~2) satisfy equation (16.63) on the whole of~2, with 
b=O, and suppose that (16.64) holds with D=~2. Then u is a linear function. 
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We shall see below that this theorem is also a consequence of the Holder 
estimate for the unit normal of the graph of u. 

16.5. Quasiconformal Mappings 

In this section, we shall consider mappings between C 2 hypersurfaces 6, 1:c 1R3. 
The surfaces IS and 1: are assumed to be oriented, that is, it is assumed that there 
exist unit normal vectors v, J.l defined and continuous over all of 6, 1: respectively. 
For our application in the next section 6 and 1: will be graphs and hence given by 
representations of the form (16.2), (16.3). 

Points ofIR 3 will be denoted X = (x I' x 2' x 3)· y = ( YI' h'Y3) will always denote a 
fixed point of $ and, for p > 0, we set 6 p( Y) = IS (l Bp( Y). R will denote a fixed 
positive constant such that 6 R ( Y)c C 6. We shall often use 6 p as an abbreviation 
for ISp( Y). 

We shall need the classical version of Stokes' theorem: if v = (VI' v2' v3 ) is a C I 
vector function defined in a neighborhood of 6 and if ~ c c 6 is such that a~ 
consists of a finite union of simple closed C I curves, then 

( 16.68) S v·curl v dA == S V· D x v dA = S Vi dXi== S t·v ds, 
~ ~ iY§ iY§ 

where A denotes surface area on 6, a~ is appropriately oriented, s denotes arc 
length on o~ and t is the unit tangent vector of a~. In this section we follow the 
convention that repeated indices imply summation from 1 to 3. If we take v = fDg 
in (16.68), wheref,g are respectively C I and C 2 functions defined in a neighborhood 
of 6, then, by virtue of the operator identity D x D = 0, we get from (16.68) 

Sv.DfxDg dA = Sfdg== Sfds ds , 
~ iJ~ iJ'if 

where dg/ds== t· Dg is the directional derivative of 9 in the direction oft. Since only 
first derivatives off, 9 appear here, it is easy to see that the above identity is valid 
if both f and 9 are merely C I. Note that, because of the vector identities a x a = 0, 
a· a x b = 0 for a, b E 1R3, we can write 

v·Dfx Dg=v·bfx bg 

on 6, where b is the tangential gradient operator on 6 defined by (16.4). Hence 
for arbitrary C I functions f, 9 on 6 we have the identity 

(\6.69) S v·bfx bg dA = Sf a:q== Sf: ds. 
~ o~ iJ~ 
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Our basic assumption concerning ~ will be that there exists a vector function 
W= (WI' w 2 ' ( 3 ) which is C I in some neighborhood of ~ and such that 

(16.70) sup IwI+ sup IDwl ~Ao and Jl' D x W= 1 on ~, 
1 1 

where Ao is a constant. By applying Stokes' formula (16.68) on a subset o;§ c ~ 
(with Jl in place of v and (JJ in place of v), we then have 

(16.71 ) A(o;§) = f wjdxj' 
iJff 

that is, the area of a subset o;§ c ~ can be expressed as a boundary integral taken 
over co;§. 

An example of special interest for us here will be the case when ~ is the upper 
hemisphere {X=(x" X 2 ' x3 )IIXj=I, x 3 >0) of the unit sphere. In this case, 
taking Jl{X) = X, we have (16.70) with 

It is worth pointing out (although we shall have no need of it here) that if .e is an 
arbitrary, connected, oriented, compact C 2 surface in 1R 3 , if Rc.e is compact 
with non-empty interior and if we take 

then there always exists a vector field (JJ satisfying (16.70). A proof of this assertion 
involves a straightforward application of the theory of differential forms and the 
de Rham cohomology groups; the reader is referred to the discussion in [SI 6]. 

Let us now consider a mapping 

which is C I in the sense that each CPj (as a mapping from (5 into IR) hasa C I extension 
(Pj to some neighborhood of (5. We wish to introduce the concept of quasiconfor
mality of qJ, but to do this we first need to define the signed area magnification/actor 
J(qJ) ofqJ. Namely, J(qJ) is defined on S by 

(16.72) 

This definition of J(qJ) is easily motivated as follows. Let S be a region of (5 which is 
such that as is a simple, smooth curve, and suppose that qJ is one-to-one with a C' 
inverse in some open subset of 1: which contains qJ(S). Assuming that the curves 
(18 and cqJ(S) are appropriately oriented, we can apply (16.69) and (16.71) to give 

A(qJ(S»= f Wi dx j= ± f Wi 0 qJ dcpj= ± f v·(bWj 0 qJ) x (bcpj) dA 
iJ",(8) 
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with the + or - sign according as fP is orientation preserving or reversing on tff. 
This identity clearly motivates the definition (16.72). 

An important (and intuitively obvious) fact concerning J( fP) is that it is indepen
dent of coordinates in the folJowing sense: If P, Q are linear isometries of 1R3 with 

det P=det Q= I, 

and if we define 

S={P(X- Y) I XE 6}, :!={Q(X-fP(Y)) I XE 2}, 
v=povop-I, ii=QopoQ-I, w=QO(!}oQ-I, iP=QofP,)p-l, 

then 

(16.73) 

where J denotes the tangential gradient operator on S. The relation (16.73) is 
easily checked by first representing the isometries P, Q in terms of orthogonal 
matrices and then using two elementary facts from linear algebra, namely that if 
A, Bare 3 x 3 matrices, then det AB=det A det B, and if A has rows a, b. c, then 
det A = a· b x c. It can also be checked by using (16.70) that 

If the isometries P, Q above are chosen so that 

v(O) = ';;(0) = (0, 0, I), 

and if we introduce new coordinates 

then S can be represented near 0 in the form 

where JtI is a neighborhood of 0 E 1R2 and ii is a C 2(o/I) function with Dii(O) =0. 
We also then have 

by virtue of the fact that the vectors bjip(O),}= 1,2,3, are tangent to i at O. That is, 
we have 
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Thus if 

is defined by 

then t/I approximates ip near 0 in the sense that 

I(t/I(O, 0) - ip«(, uW)1 = 0(1(1) as 1(1 - 0, (e 0/1. 

Furthermore, using (16.73) together with the definition ~ = D - v(v· D), one now 
easily checks that 

(16.74) 

that is, J(#p)( Y ) is just the Jacobian of t/I at O. Also it follows that 

(16.75) 

In view of( 16.74), (16.75) it is now reasonable, by analogy with (12.2), to make 
the following definition. Namely, the mapping #p is said to be a (K, K')-quasiconfor
mal mapping from 6 into 1: if 

(16.76) 

at each point Xe6. Here K, K' are real constants with K'~O and Ib#p(X)j2= 
3 

L 1c5#pj(X)1 2 • We emphasize here that it is not assumed in the above that K is 
j= 1 

positive (cf. (12.2». Note that when K'=O, we must have IKI~ I unless b#p=O. 
Before beginning the proof of the main Holder continuity result for quasicon

formal maps, one further preliminary is needed; namely, if 9 is an arbitrary C 1 

function on 6 R' then 

(16.77) f 9 ds=Dp f 91c5rl dA 
86.. 6 .. 

for almost all p e (0, R), where r is the radial distance function relative to Y, defined 
by 

Formula (16.77) is in fact a special case of the important co-area formula (see [FE]). 
We proceed to prove (16.77). first note that the left side of(16.77) makes sense for 
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almost all p E (0, R) because by Sard's Theorem [S8] we can write 

(16.78) 
nIp) 

o3p=$pn{XEIR JIIX-y!=p:= u r~) 
j~ 1 

417 

for almost all p E (0, R), where the r~J) are simple closed C 2 curves and n(p) is a 
positive integer. Actually, Sard's Theorem guarantees that for almost all p E (0, R) 

the tangential gradient br vanishes at no point of asp; the geometric interpretation 
of this is that the surface 6 and the sphere {X E IRJII X - y! = p: intersect non

tangentially, and this explains why (16.78) holds. Now let us take some fixed 
pE(O, R) with Jr*O on a6" and let £>0 be small enough to ensure br*O on @, 
where f§=6 p -6p _,' We wish now to apply Stokes' Theorem (16.68); the ap
propriately oriented unit tangent for Of§ is given by t= v x br/lbrl on a6 and p 

t= - v x br/lbrl on a6 p _,' Let F denote a C I extension of the vector function 

v x J,./lbrl to some open subset of IRJ containing @. Then applying (16.68) with 

I 
V=- (r- p+£)qF, 

£ 

and noting that v=O on asp_,' we obtain 

Since 

f 9 ds= f ~ (r-p+£)gF·t d~ 
i)6 p i)<ij 

f 
I 
- (r- P+E;)V' (gD x F + Dg x F) dA 
[; 

+ ~ f gv· Dr x F dA. 
6 p - 6 p _, 

v· Dr x F = (v x Dr)· (v x br/lbrl) 

=Iv x (jrl 2 /lbrl =Ibrj 

I 
- (r - p + [;)v· (,q D x F + Dg x F) dA 
[; 
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and, since 

r-p+E: 
0,.,; ,.,;1 

E: 

on Sp - Sp_., we have (16.77) by letting E: ---+ O. 
The main Holder estimate will be a consequence of estimates for the integral 

~(p; Z), which is defined for Z E e and p > 0 by 

~(p; Z)= f lt5cpl2 dA. 
Sp(Z, 

(cf. the Dirichlet integral used in Chapter 12). 
The following lemma, which should be compared with inequality (12.8), 

provides a bound for ~(R/2; Y). In the statement of the lemma, and subsequently, 
A 1 denotes a constant such that 

(16.79) 

It will be shown in the next section that in the case where :2) is a graph with (K, K')
quasiconformal Gauss map, one can obtain a bound for A 1 in terms of K and K' R2. 

Lemma 16.13. Suppose tp is a (K, K')-qulIsiconformal C t mapping from e into 1. 
Then 

(16.80) ~(R/2; Y)"';C 

Proof Let r~', j= l, ... , n(p), be as in (16.78), and assume r~' are oriented 
appropriately for the use of ( 16.68) over S p. Then, using the definition ( 16.72) of 
J(tp) in combination with (16.69), we obtain the identity 

(16.81) 

for almost all p E (0, R). This identity will playa key role in the proof of the main 
estimate for ~(p; Z) given in the next theorem. For the present, we simply use 
Schwarz's inequality in combination with the inequality 
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whereupon (16.81), (16.70) and (16.77) imply that for almost all pE(O, R) 

I S J(qJ) dA I:::; (S~p Iwi) S l(iqJl ds 
6 p 06 p 

Thus, since l(irl :::; I Drl = I, we obtain from (16.76) that for almost all p E (0, 3 R14) 

where we are using n( p) as an abbreviation for 1)( p; Y) and where 

Note thatf'(p) and 1)'(p) exist for almost all p E (0, R) becausef(p) and 1)(p) are 
non-decreasing in p. Squaring each side of the above inequality, we then obtain 

Now if we let 

g( p) = j( p) + p R 

(so that g'( p) ~ R) and let 

l\:( p) = 1)( p) + pi R, 

then it is quite a straightforward matter to show that the previous inequality 
implies an inequality of the form 

(f2( p):::; c,q'( p )(f'( p) 

for almost all p E (RI4, RI2), where C = C(Ao' K, K' R2, AI)' This can be written 

(\ 6.82) -- - >---. d ( I J I 
dp (t(p)/ /'" Cg'(p) 
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Now, by using the Holder inequality and the monotonicity of g, we have 

so that 

3R/4 3R/4 d 

~( f 9'(P)dP)( f -fD) 
RI2 RI2 9 I 

3R/4 

f dp 
~ (g(3R/4)-g(R/2» -,-' 

9 (p) 
R/2 

3R/4 

f dp (R/4)2 

gT,-;)~ g(3R/4)-g(R/2) 
RI2 

(R/4)2 
>~--. 

g(3R/4) 

Hence integrating (16.82) over (R/2, 3R/4) and using this last inequality we obtain 

I I (R/4)2 
--- >- , 
Cf,(R/2) Cf,(3R/4) =--- Cg(3R/4) 

so that 

The desired result (16.80) now follows by using (16.79). 0 

The next theorem contains the main estimate for 1:'( p; Z). In the statement of the 
theorem, and subsequently, ,12 denotes a constant such that 

(16.83) f H2dA~A2' 
SR"( Y) 

where H=(K t +K 2 )/2 is the mean curvature of 3. 

Theorem 16.14. Suppose fP is a (K, K')-quasiconformal C t mappingfrom 6 into 2. 
Then 

(16.84) 
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for all Z E SRI4( Y) and all p E (0, R/4), where C andrx.are positive constants depending 
only on Ao, K, K'R2, Al and A 2. 

Proof In the proof we let Sp=Sp(Z) and !)(p)=!)(p; Z), where Z E !)R/4(Y)' 
and let r denote the radial distance function defined by r(X) = IX - Zl, X E 1R3. 

We take p E (0, R/4) such that bris never zero on asp, so that we can assume (16.77) 
and (16.78). Since the curves T~) are closed, we have 

f dsi ds=O; (T(i)=T!i», 
rw 

hence, if we let Xi denote the initial point (corresponding to arc length s = 0) of T~), 
then the integral on the right hand side of (16.81) can be written 

Hence (16.81) gives 

n(p) { f l~qI f IdJPl } ~ .~ ds ds ds ds 
}- I rU) r(j) 

n(p) { } ~ .~ f IfJro 0 qll ds f Ibqll ds 
} - I r(j) r(j) 

by (16.70), 

by Schwarz's inequality, 



422 16. Equations of Mean Curvature Type 

by (16.36), where C= C(AI' A 2). Therefore by (16.76) we have 

for almost all p E (0, R/4), where C = C(A I' A 2) by virtue of (16.34). Now define 

It is then not difficult to see that the above inequality implies an inequality of the 
form 

where C = C(A o' K. K' R2, A I' A 2)' This last inequality can be written 

d 
dp log (f)(p)?(Cp)-I, 

and, since (f)( p) in increasing in p. we can integrate to obtain 

log«f)(p)/(f)(R/4))~C-Ilog(4p/R), p~R/4. 

Thus 

(fj(p)~4>(fj(R/4)(p/R», p~ R14, 

(fj(R/4)~n(R/2; Y)+ 1/16 

and hence the required estimate follows from ( 16.80). 0 

Using the extended Morrey estimate, Lemma 16.4, we can now finally deduce 
from Theorem 16.14 the Holder estimate for (K, K')·quasiconformal maps. 

Theorem 16.15. Suppose tp is a (K, K')-quasicon(orma/ C 1 mappingfrom 6 into l:. 
Then 

(16.85) sup Itp(X)-tp(Y)I~C(p/R», pE(0,R/4), 
Xe6~(Y) 
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where C and a are positive constants depending only on Ao. K, K'R2 , Ai' A2 and 
S;( Y) is the component of S i Y) which contains Y. 

Proof Let Z be an arbitrary point of SR/4( Y). By the Holder inequality and the 
estimates (16.84) and (16.34) we have 

f lc5cp jl dA~ (CC')1/2p(p/R)"/2, p E (0, R/4), i= 1,2,3, 
6 p (Z) 

where C, a are as in (16.84) and C' = C'(A 1, A 2 ). Hence the hypotheses of Lemma 
16.4 are satisfied with K=(CC')1/2 and p=a/2. The theorem thus follows. 0 

16.6. Graphs with Quasiconformal Gauss Map 

In this section S will denote the graph {(x, z) E R31x E a, z=u(x)} of a C2(Q) 
function u, y will denote a fixed point of a, and it will be assumed that a contains 
the disc BR( Y) = {x E R2 Ilx - .vi < R}. Y will denote the point ( y, Y3) ( Y3 = u( y» 
of S and, as in Section 16.4, v will denote the upward unit normal function defined 
on axR by 

v(x, Z)=:V(X)=( - D~X),~} v=Jl +IDuI 2 , x E a, z E R. 

The Gauss map G of S, which maps S into the upper hemisphere 

is defined by setting 

(16.86) 

at each point (x, x 3 ) E S. The remaining notation and terminology are as in 
Sections 16.4 and 16.5. 

We first want to explicitly obtain the quantities l~tpl2 and J(tp) in the case when 
tp=G. This is quite straightforward if we set up new coordinates as in Section 16.5. 
In this case the function '" is defined by 

so that we obtain, from (16.74) and (16.75), 
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and 

But then by Section 14.6 we have 

(16.87) 
J(G)( Y)=K 1"2 

I{jGI2( Y)="~ +Ki, 

16.'£qualions of Mean Curvalure Type 

where" I' "2 are the principal curvatures of:; at Y. The product K 1 K 2 appearing in 
(16.87) is called the Gauss curvature of ei; it is an extremely important geometric 
invariant in the study of surfaces. 

By using the identities (16.87) and recalling the definition (16.76), we now see 
that G is (K. K')-quasiconformal if and only if at each point of ei the principal 
curvatures ",. K2 satisfy 

(16.88) 

We thus see why the study of quasiconformal maps is relevant to the investigation 
of equations of mean curvature type; because by squaring ( 16.63)' we obtain the 
inequality 

(X, 2 (X2 2 p2 
-K +-K = -2K K +-_. 
(X , (X 2 '2 (X (X 
2' , 2 

That is. by virtue of (16.64)' and (16.65)" we deduce that the Gauss map G of the 
graph of a solution u of(16.63). (16.64). (16.65). is (K. K')-quasiconformalldth 

(16.89) 

Thus the results established in this section for graphs with quasiconformal Gauss 
map are all applicable to the graphs of solutions of (16.63). (16.64). (16.65). 

We wish to eventually apply Theorem 16.15 to the Gauss map G, but first we 
need to discuss appropriate choices for the constants Ao. A, and A 2 . To begin with, 
we have already seen in Section 16.5 that we can take 

w(X)= ---.--.0 . ( 
X2 X, ) 

l+x3 l+x3 

One then easily checks that an appropriate choice for the constant Ao is Ao = 4. 
Next we notice by Lemma 16.13 and (16.87) we have, provided G is (K, K')

quasiconformal. 

f (K~+K~)dA~C, 
EiR!2(YI 
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where C=C(K, K'R2, AI). Thus, since 

we can take A2 = C/2. with C as above. The next lemma shows that we can choose 
A 1 to depend only on K and K' R2. 

Lemma 16.16. Suppose Gis (K, K')-quasiconf'ormal. Then 

( 16.90) 

ProoF The starting point for our proof is the identity ( 16.44) which. by virtue of 
formula (14.104), can be written in the form 

f (K~ + K~)'1 dx + f (l'kDk Vj Dj'1- 2Vk DkH'1) dx=O 
n 11 

for all '1E C~(Q). Here we write H(x)=H(x. u(x». ,,)X) = "Ix-. II(X» for XE Q. 
If '1 E C~(Q). we then obtain by integration by parts 

f(K~+K~-4H2)'1 dx= f(VjVkDjk'1-4HvjDj'1) dx. 
n n 

- 2 f "1"2'1 dx = f (Vj vk Djk '1- 2("1 + "2)Vj Dj'1) dx 
n n 

for all '1 E C~(Q). By (16.88) we then have. replacing '1 by '12, 

f(Ki +K~)'12 dx ~ IKlf (ID2'121 + 21K 1 + K211D'121) dx + K' f'12 dx. 
n n n 

Since we can write 

this gives 

i f (Kf + I\~ )'12 dx ~ f : c(ID'11 2 + '1ID2'11> + K''12} dx. 
n n 
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where C=C(K). Now let p>o and Z=(z, u(z» be such that Bp(z) c D, and let 
us choose '1 such that 0:::;;'1:::;; I in D, '1 =. I on B pI2(z), '1 =.0 on D- Bp(z), ID'1I:::;; c/p, 
ID2'11 :::;; c/ p2 where c is an absolute constant. (It is clear that such a function '1 
exists.) Then, since K' :::;; K' R2 / p2, we obtain 

(16.91) f (Ki + Ki)'12 dx:::;; C 
u 

where C=C(K, K'R2). Consequently, using Holder's inequality, we have 

f 1"'11 dx:::;; ( f (H'1)2 dx } /2 IBp(Z)II/2 
U U 

The lemma now follows from (16.53). 0 

From Lemma 16.16, Theorem 16.15 and our previous choices of Ao, AI' we 
can now deduce that ifG is (K, K')-quasiconformal then 

(16.92) sup Iv(X)-v(Y)I:::;;C(p/R)'" pe(O,R), 

where C and IX are positive constants depending only on K, K' R2. Notice that we 
assert (16.92) for all p e (0, R) rather than p e (0, R/4) as in Theorem 16.15. We 
can do this because Ivl = 1 (which means an inequality of the form (16.92) trivially 
holds for p e (R/4, R». 

The estimate (16.92) can be used to obtain some rather strong regularity results 
for 6. We first use (16.92) to deduce some facts about local non-parametric 
representations of 6. Let P be a linear isometry of 1R3 such that 

v(O)=Pv(y, Y3)=(0, 0, I) 

and let 

where 0 e (0, 1). Since 6 is a C 2 surface we of course know that for small enough 
(} there is a neighborhood d/i of ° e 1R2 and a C 2(cfI) function u with Du(O)=O and 

(16.93) 

Furthermore, writing 
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we have by (16.92) that 

where C, IX are as in (16.92). Consequently 

which implies 

(16.94) 

provided e is such that 

( 16.95) C(}a <!. 

Because of (16.94), we can infer that a representation of the above type holds for 
any 0 satisfying (16.95). This follows from the fact that if e E (0. 1) is such that 
(16.93) and (16.95) hold, then, by using the smoothness of $ together with (16.94). 
we can extend u so that a representation of the form (16.93) holds with e~+£lR( Y) 
(r.>0) in place of e:R ( Y). For later reference we also note that (16.94) implies 

(16.96) 

We can now prove the non-trivial connectivity result of the following lemma. 

Lemma 16.17. Suppose G is (K. K')-quasil'Onjormal. Then there is a constant 0 E 

(0, I). depending only on K. K'R2, such that 6 p ( Y) is connected/or each p<OR. 

Proof In the proof we will let C l' C 2' ... denote constants depending only on 
K, K'R2. Btl' for (j > 0, will denote the open ball {X E 1R3 IIX - YI < (j}. Let (I E 

(0, 1) satisfy (16.95), p = OR/2, {1 E (0. ±) and define ffi/L. to be the collection of 
those components of e /z( Y) which intersect the ball Bp . For each Cfj E ffip we 

- p p 
can find Z E ~~ n B 14 such that 

p 

and hence, replacing Y by Z and R by R/2 in the discussion preceding the lemma, 
we see that Cfj can be represented in the form (16.93), (16.94). Using such a non
parametric representation for each Cfj E mp and also using the fact that no two 
elements of mp can intersect, it follows that the union of all the components 
Cfj E (ijp is contained in a region bounded between two parallel planes tr l • trz with 

(16.97) 

where IX is as in (16.92). 
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Our aim now is to show that, for suitable choices of P and (J depending only 
on Kand K'R2, there is only one element (viz. ($*/2(Y» in 6)/1. Suppose that in fact 
there are two distinct elements f§ l' f§ 2 E 6) II· w~ can clearly choose f§ l' f§ 2 to be 
adjacent in the sense that the volume l' enclosed by f§ l' f§2 and aj} /2 contains no 
other elements f§ E 6)/1. Thus l' n B/I consists entirely of points above the graph 
($ or entirely of points below ($; it is then evident that if the unit normal v points 
out of (into) l' on f§ l' then it also points out of (into) l' on f§ 2. Furthermore, by 
(16.97) we have 

(16.98) 

An application of the divergence theorem over l' then gives 

f v·v dA + f v·v dA = ± { f div v dx dx 3 - f " . v dA} , 
'1 '2 ~ 111,./2"1' 

where" is the outward unit normal of aBp , 2 • By (16.11) and (16.98) this gives 

A(f§I)+A(f§2)~2 f IH(x)1 dx dX3 + C3(P+lJ")p2. 
l' 

Also, by (16.98) and (16.91). 

( )1~ ~ J H2(X) dx dX3 {C2(P+lJ")p3}1/2 

BPI2 

~ (C4p)I/2{ C2(P + lJ" )p3} 1/2 

~ JC4 C2(P +lJ")p2. 

Hence, provided P + lJ" < 1, we have 

(16.99) 

On the other hand, by using a non-parametric representation as in (16.93), 
(16.94) we infer that 
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for each rs e (f;p; where C6 >O is an absolute constant. (Since 6:/4(Z) c rs we 
can deduce from (16.94) that (16.100) holds with (for example) C6 =7t/64). In
equalities (16.99) and (16.100) are clearly contradictory if we choose p.O small 
enough (but depending only on K and K'R2). For such a choice of p, () we thus 
have 

But by using a representation of the form (16.93), (16.94) for 6:/2( Y), we clearly 
have 6:/2( Y) n Bpp connected. Thus 6 pp( Y) = 6 p8R/2( Y) is connected. The lemma 
follows because p, 0 depended only on K. K' R2. 0 

Because of the above connectivity result we can now replace 6;( Y) in (16.92) 
by 6 p(Y) for p~OR. However, since Ivl=1. an inequality of the form (16.92) 
is trivial for p > OR. Hence we have the following theorem. 

Theorem 16.18. Suppose Gis (K, K')-quasiconformal. Then 

(16.101) sup Iv(X)-v(y)i~C(p/R». pe(O.R). 
x€ 6,,( y) 

where C and (X are positive constants depending only on K. K'R2. 

Remarks. (i) The estimate (16.101) implies that 

(16.102) Iv<X)-v(X)1 ~2:tC<lX -XI/RY 

for all X. X e 6 R/4( Y). This is seen by using (16. 10 I) with X in place of Yand with 
R/2 in place of R. 

(ii) If K'=O and Q=R2. then we can let R-> cc in (16.101). thus showing 
that v(X) == v( Y) on 6. That is. we have the following corollary. 

Corollary 16.19. Suppose G is (K. O)-quasiconformal and Q=R2. Then u is a 
linear function. 

Note that Corollary 16.19 can be directly deduced by letting R -> x in (16.84). 
without first proving (16.101) or even (16.92). However. we still require Lemma 
16.16 to show that A 1 can be chosen to depend only on K. 

16.7. Applications to Equations of Mean Curvature Type 

Here 6 will denote the graph of a solution u of (16.63). (16.64). (16.65). The 
remaining terminology will be as in Sections 16.4-16.6. 

We first note that. since the Gauss map G is automatically (K. K')-quasi
conformal with K. K' as in ( 16.89). we can immediately deduce Theorem 16.12 from 
Corollary 16.19 above. 
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We next wish to show that Theorem 16.18 implies a bound for the principal 
curvatures KI' K2 of 6, provided a suitable Holder condition is imposed on the 
coefficients di , b. In order that this condition may be conveniently described, we 
first extend the matrix [a ii ] to be a 3 x 3 matrix (cf. the procedure of Section 16.4) 
by defining 

2 
3i( ) i3( )' ij( ). I ') a X,Z,p =a X,Z,p = ,--Pja X,Z,p.l= ,~, 

j= 1 

2 

a33(x,z,p)= LPipjaij(x.z,p). 
i.j= 1 

It will also be convenient to express aij, b in terms of X = (x, z) E Q x ~ and 
v=(1 +lpI 2)-1/2(_p, I), by defining 

a~(X, v)=aij(x, z. p), i,j= I, 2, 3, 

b.(X, v)= (I + Ip12) -1/2b(x. z, p) 

for all (x, z, p)EQ x ~ x ~2. Notice that these definitions give a~, b. on the sets 
(Qx ~)x {'E~31 "1= I, (3)0}. (In the case when equation (16.63) arises as the 
non-parametric Euler equation of an elliptic parametric variational problem, we 
show in Appendix 16.8 that the functions a~, b. arise quite naturally.) We now 
assume that the functions a~, b. satisfy the Holder conditions 

(16.103) 
la~(X, v)-a~(X, v)I::;;lll{(lX-XIIR)II+lv-vlll], 

Ib.(X, v)-b.(X, V)I::;;1l2{(IX-XIIR)II+lv-vl ll :, 

for all X,X EQx ~ and all v, VE {( E ~31 "1= I, (3)0}, where Ill' 112 and f3 are 
constants with f3 E (0, I). 

Theorem 16.20. Suppose (16.63), (16.64), (16.65) llnd (16.1 03) hold. Then ilK l' "2' 

are the principal curvatures of 6 at Y. we have 

Proof Choose 0 small enough to ensure that 6 8R( Y) is connected (Lemma 16.17) 
and can be represented in the form (16.93) with (16.95)(and hence (16.94» holding. 
By applying the discussion of Section 16.4 to both 6 and the transformed surface 
3 of (16.93). it then follows that ~ satisfies an. equation of the form 
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on OU, where 

for all ( E 1R2, and 

Consequently, by (16.94), we have for all ( E B= BSRI2(0) 

(16.106) 
1~12/2~ aij<O~i~j~ YI~12, 

Ib( 01 ~ 2Jl. 

431 

By (16.103), (16.102) and the discussion in Section 16.4, it also follows that we can 
assume the Holder estimates 

la ii(() _aii(')1 ~ c(1( -WR)<r/I , (,' E B, i,j= I, 2 
(16.107) 

Ijj<o-jj(')I~C(I(-'I/R)~p, (,'EB. 

Furthermore it is clear from (16.94), and the fact that u(O) =0, that 

(16.108) sup lul~R. 
B 

Then, by using Schauder's interior estimate (Theorem 6.2) in conjunction with 
(16.106), (16.107) and (16.108), we infer that 

lulL: B ~C{R+ JlR2 + R2+~PJl2R-~P} 
~CR, 

where C= C(y, JlR, Jll' Jl2R, P). In particular we have 

2 

L IDiju(O)1 ~ C; R, 
i.j= 1 

whence the theorem follows by (16.87). 0 

The Holder estimate (16.10 I) can also be used to obtain gradient estimates for 
solutions U of(l6.63), (16.64), (16.65). The following theorem deals with the homo
geneous case, when no smoothness or continuity restrictions will be imposed on 
the coefficients. 
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Theorem 16.21. Suppose (16.63), (16.64) hold. b=O. and suppose the functions 
di(x, u, Du), i,j= 1,2 are measurable on fl. Then 

where 

m R = sup (u - u(y» 
B"ly) 

Proof As in Theorem 16.20 we assume 0 is small enough to ensure that ~I/R( Y) 
is connected and that the representation (16.93). (16.94) holds. Notice that since 
h=O we can choose (1 to depend only on y. Also. we can here suppose that the 
matrix of P. [pjj]' is chosen such that Pn =0. Hence we have 

Now (since b=O). equation (16.105) can be written in the form 

a.D 11U+2fJD I2U+ D22U=0 

where a.= all /a22 and fJ=a I2/a22 . We now multiply each side of this equation by 
P31 D l({J. where ({J E C~(CfI) and integrate over CfI. Making use of the relations 

f D22uD1({J d(= - f D2uD 12({J d(= f D21 UD2({J d( 

.. '* .. 
and writing 

we then obtain 

f (rxDIt/lD1({J + 2fJD2t/1D1({J+ D2t/1D2({J) de =0 . .. 
That is. t/I is a weak solution of the uniformly elliptic equation 

Furthermore. we have t/I>O on CfI by (16.110). Hence we can apply the Harnack 
inequality. Theorem 8.20. to t/I. thus giving 

(16.111) sup t/I~ C inf t/I. 
BeRI2(0) Bel',2(0) 
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where C = C(y). But because of (16.110) and (16.94) we know that 

on o/J, and hence defining v on Q x IR by 

vex, z)=(l +IDu(x)12)1/2, x E Q, z E IR, 

we can deduce from (16.111) that 

sup I.)(X)~C inf veX), 
XeSeR/l X"SeR/2 

where C= C(y). By varying Y it clearly follows that there is a number X. E (0, f), 
depending only on y, such that 

whenever XI =(x(ll, U(X(ll» and X2 =(X(2l, U(X(2l» are such that IXI -X21 ~x.R 
and x(ll, X(2l E BRI2(y). Now let 

and let Yl = (ill, u(ill» and Y2 = (yl2l, U(y(2l» be such that ylll, i 2l E B;R(y) 
and 

IDu(ylll)1 = sup IDul, 

IDu(yl2l)1 = inf IDul. 
B;R(yl 

Take a sequence XI' ... , XN of points in 6 1\ (B;R(y) x IR) such that IXi + I - Xii < 
XR, i= 1, ... , N -1, and such that Xl = YI' XN = Y2 • Clearly, repeated application 
of (16.111) implies 

that is 

sup }1 +IDuI2~CN inf }l +IDuI 2 • 
B;R(Jll B;R(yl 

However, it is clear that we can choose N so that 
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where C= C(y). Hence we obtain 

sup Jl+IDuI2~{CI exp(C2mR /R)} inf Jl+IDuI2, 
B;R(JlI B;R(JlI 

where CI =CI(y), C2 =C2(y). Finally, Theorem 16.21 follows by using the fact 
that 

inf IDul~x-lmR/R. 
B;R(JlI 

(See problem 16.5.) 0 

The Holder estimate for" can also be used in the non-homogeneous case to 
deduce a gradient estimate for u, but in this case it is necessary to impose Lipschitz 
restrictions on the functions a~, b. introduced above. The interested reader is 
referred to [SI 4]. 

16.8. Appendix: Elliptic Parametric Functionals 

Let 0 be a bounded domain in R2 and consider the functionall, defined for C I 
mappings Y=(fl' f2' f 3): n--. R3 by 

(16.113) l(Y) = f G(x, Y, DIY' D 2Y) dx, 
u 

where G = G(x, X, p) is a given continuous function of (x, X, p) E R2 x R3 X R6. 
(Here of course DjY=(Djfl' Djf2' Djf3) for i= 1. 2). Now let us consider the 
possibility that 1 remains invariant under orientation preserving diffeomorphisms 
of R2; that is, whenever'; is a diffeomorphism of R2 onto itself with positive 
Jacobian, we would have 

f G(" Yw, DI YW. D2 Y(O) d, = f G(x, Y(x), DI Y(x), D2 Y(x»dx, 
a u 

where 0'=';(0) and Y=Y 0 ",-I. A simple computation (cf. [MY 5], p. 349) 
shows that this would be true for all such diffeomorphisms .; and domains 0 if 
and only if there is a real-valued function F on R3 x R3 such that 

where 
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and 

(16.115) F(X,Aq)=AF(X,q), (X,q)E~3X~3, A>O. 

Note in particular that (16.114) implies that G(x, X, p) cannot depend on x; that 
is, G(x, X,p)=G(O, X,p) for (x, X,p) E ~2 x ~3 X ~6. In case p=(D1Y, D2Y), 
where Y is a C 1 map from Q into ~3, P is given by 

P=(D 1 Y3 ·D2 Y2 -Dl Y2· D2 Y3, Dl Y1 ·D2 Y3 -Dl Y3 ·D2Yl' 

Dl Y2 ·D2 Y1 -Dl Y1·D2 Y2)· 

As is well known, in case Y is one-to-one and such that the Jacobian matrix 
[DjYj(x)] has rank 2 for each x E Q, this last identity can be written 

P=xv, 

where v is the unit normal of the embedded surface 6= {Y(x) I x E Q} and X is 
the area magnification factor of the mapping Y. Thus, assuming that we orient 6 
with unit normal v such that X> 0, we can write 

/(Y)= f F(X, v(X» dA(X); 
s 

that is, we can express /(Y) completely in terms of the oriented surface 6 and 
independently of the particular mapping Y that is used to represent 6. Through 
this discussion we are led to consider the functional J, defined for any smooth 
oriented surface 6 in ~3 having finite area by 

(16.116) J(6) = f F(X, v(X» dA(X); 
s 

this functional has the property that J(6)=/(Y) whenever Y is a one-to-one C 1 

mapping from Q into ~3 such that [DjYJ has rank 2 at each point of Q and 
6= {Y(x) I x E Q}. 

If Fsatisfies (16.115), we call a functional of the form (16.116) a parametric 
functional. The functional J is called elliptic if F is C 2 on ~3 x (~3 - {O}) and if 
the convexity condition 

holds for all X E ~3, q E ~3 - {O} and e E ~3. Notice that, up to a scalar factor, 
(16.117) is the strongest convexity condition possible for F in view of the homo
geneity condition (16.115). 
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If we now consider a non-parametric surface $ given by 

S= {(x, u(x» E 1R31 x E Q}, 

where u E C 2(Q). then, taking v to be the downward unit normal 
(Du. -I)/JI +IDuI 2, we have 

J(S)= f F(x, u(x), Du(x), -I) dx. 

a 

Notice that here we have used the relation dA =JI + IDul 2 dx. The expression on 
the right can be considered as a non-parametric functional. defined for any u E 

C 2(Q). The Euler-Lagrange equation for this non-parametric functional is 

2 

L DJDqiF(x.u,Du, -1)]-Dx,F(x,u,Du, -1)=0. 
i= 1 

By using the chain rule and the homogeneity condition (16.115). one can easily 
check that this equation can be written in the form 

where 

(16.118) lii(x. u. Du)=vDqiqjF(x, u. Du. -I). i.j= 1,2, 

3 

(16.119) b(x.u.Du)=v L Dq,xiF(X,u.Du, -I), 
i= 1 

withv=JI+IDuI2. By using (16.115), (16.117) it is not difficult to check that 
(16.64), (16.65) hold with constants 'Y and Il depending on F. That is. the non
parametric Euler-Lagrange equation for an elliptic parametric functional is an 
equation of mean curvature type. 

Finally we wish to point out that the functions a~, b. introduced in Section 
16.7 have a natural interpretation in the present context. In fact one can easily 
check that in case aii• b are as in (16.118). (16.119), then a~. b. are given by 

3 

h.(X. v)= L DqiX,F(X. v); 
i= 1 

furthermore the conditions (16.103) hold automatically with Ili' 112 determined 
by F. provided that FE C 3(1R3 X (1R3 - {OJ ». 
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Notes 

The interior gradient bound, Theorem 16.5, for the minimal surface equation was 
discovered, in the case of two variables, by Finn [FN 2] and in the general case by 
Bombieri, De Giorgi and Miranda [BOM]. An interior gradient bound for the 
general prescribed mean curvature equation (16.1) was first established by Lady
zhenskaya and Vral'tseva [LU 6]. The methods of both papers [BOM] and [LU 6] 
depended upon an isoperimetric inequality of Federer and Fleming (see [FE]) and 
a resulting Sobolev inequality (see [MO I] and [LV 6]). Our derivation of 
Theorem 16.5, together with the relevant preparatory material in Section 16.1, is 
adapted from the work of Michael and Simon [MSI] and Trudinger [TR 6, 8]. 
The key idea of employing methods analogous to classical potential theory was 
invoked in an (unpublished) simplification by Michael of the Sobolev inequality 
in [MO I] and subsequently utilized in [MSI] and [TR 6, 8]. The integration by 
parts formula, Lemma 16.1, is due to Morrey [MY 3]. The mean value inequality, 
Lemma 16.2, is due to Michael and Simon [MSI] and its extension, Lemma 16.3, 
is essentially given in [TR 8]. The extension of Morrey's estimate to hypersurfaces, 
Lemma 16.4, is given in [SI 4]. The process in Section 16.2, by which we conclude 
an interior gradient bound from the potential type inequality, Lemma 16.3, is 
taken from [TR 6, 8]. 

The existence theorems 16.9 and 16.11, for the cases of smooth boundary data, 
were established by Serrin [SE 4]. Theorem 16.10 essentially appears in Giaquinta 
[GI]. Note that the results of Section 16.3 can be approached by the variational 
method described in Section 10.5. In recent years the associated variational 
problems have also been studied in the space of functions of bounded variation, 
(see for example [BG 2], [GE], [GI], [MO 5]). A further approach to the equation 
of prescribed mean curvature is presented in [TE]. 

The treatment of equations of mean curvature type in Section 16.4 is based on 
[SI 4, 6]. The pioneering work on two dimensional equations of mean curvature 
type was done by Finn [FN 1,2] who treated the case aii(x, z, p)=.aii(p) and 
b=.O. Finn called his equations "equations of minimal surface type" and stated 
the structure conditions for the coefficient matrix somewhat differently (but 
equivalently) to (16.64). The first gradient estimates were obtained in [FN I, 2]. 
For a more specialized class of equations than those considered in [FN 2], (in 
fact for equations of the form (16.63) with b =. 0 and aij as in (16.118) for some F 
with F(X, p) =. F(O, p», refinements (including an inequality like that of Theorem 
16.21) were obtained by Jenkins and Serrin [1S I]. The inequality (16.112) seems 
to be new. A curvature estimate like that in Theorem 16.20 was originally obtained 
for the minimal surface equation by Heinz [HE I] and strengthened by E. Hopf 
[HO 4] and R.Osserman [OM 1]. Jenkins [JE] and Jenkins and Serrin [JS 1] 
obtained similar curvature estimates for equations of the form (16.63) in the case 
when b=.O and when aii had the form (16.118) for some Fwith F(X, p)=. F(O, p). 
The estimates in [HO 4], [OR I], [1E] and [1S I] were in fact obtained in the 
stronger form 
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For the special class of equations dealt with in [JE] and [JS I], the methods of 
Sections 4 to 7 can be modified to also give an inequality of the form (16.120), as 
shown in [SI4]. In the case b~O it can easily be shown that an estimate like 
(16.120) cannot hold in general. The only curvature estimate for the case b~ 0 prior 
to those obtained here and in [SI 4], as far as the authors are aware, was the result 
of Spruck ESP] for the constant mean curvature equation. It should also be 
mentioned that results for special classes of parametric surfaces have been obtained 
in [OM 1], [JE], [JS 1] and [SI6]. 

The general Bernstein type result of Corollary 16.19 settles a question raised 
by Osserman [OM 2, p. 137]; such a result is well known (and there are many 
proofs) in the case of the minfmal surface equati()n; (see for example [NT]). For 
the class of equations dealt with in [JE], Jenkins obtained such a result by letting 
R -+ 00 in (16.120). The question of whether the Bernstein theorem for the 
minimal surface equation carried over to IR", n > 2, provided a great impetus to the 
study of higher dimensional minimal surfaces. It was eventually shown to be true 
in case n ~ 7 by Simons [SM], who used some ideas of Fleming [FL] and De Giorgi 
[DG 2]. It was shown to be false in case n> 7 by Bombieri, De Giorgi and Giusti 
[BOG]. Curvature estimates of the type established in Theorem 16.20 were shown 
also to hold for the minimal surface equation when n ~ 7 by L. Simon [SI 5], and 
these imply Bernstein's theorem for n~ 7. 

For a thorough account of two dimensional minimal surfaces the reader is 
referred to the book [NT]. For recent developments in the higher dimensional 
theory, see [SI 7, 8], [GT 5]. 

Problems 

16.1. Show that by replacing n by some number (X < n in the choice of the function 
X in the derivation of Lemma 16.2 we obtain, instead of (16.27) and (16.40), 
the relations: 

(16.121) (I-~) f r-"g dA +~ f r-.2(1_I£5rI 2 )g dA 

SR SR 

=R-" f9dA+ f<r-a-R-")gHv.(x-y)dA 

SR SR 

-~ f(r-"-R-->)(x- y).£5g dA 

SR 
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(16.122) (I-~) f r-"g dA +~ f r-"(1-I(jrI 2 )g dA 
5 5 

= f r-"gHv·(x- y) dA -~ f r-"'(x- y).(jg dA 

5 5 

16.2. Using (16.40) and (16.121) derive the following Sobolev inequalities for 
gE CM~): 

(16.123) [ flgl PdA JIP ~ C(n, p)(diam ~)I-"[A(6)]I/P fl(jgl dA 

5 5 

for p<n/(n-I), H=O, where 

I [ n JI/P C(n,p)=- . 
nw" n-(n-l)p 

(16.124) [ flgl 2 dA J
/
2 ~ fi f (I(jgl + IHgl) dA 

5 5 

for n=2. (Note that (16.123) is established for p=n/(n-I) in [MSI].) 

16.3. Let 9 be a non-negative subharmonic function on a C 2 hypersurface 6 c 
IR" + I. Derive the following generalization of the mean value inequality (16.21): 

ifn=2 

g(y)~ 

1+ C(n)[HoR+(HoR)"] f dA 'f 2 H - IHI gin>, o-sup . 
w R" 
"5R 5 

16.4 Using Corollary (16.6) and the Harnack inequality, Theorem 8.28, show 
that a solution of the minimal surface equation in IR" which is bounded above by a 
linear function must itself be linear. 

16.5. Derive the inequality 

inf IDul ~x-lmR/R 
B~R(Y) 

used in the proof of Theorem 16.21. 
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16.6. Using (16.60) show that the constants C 1 and C2 in Theorem 16.5 and 
Corollary 16.6 need only depend on nand d 2 H I. 

16.7. By adapting the Perron process described in Chapter 2, show that condition 
(16.60) is sufficient to guarantee the existence of a classical solution of the prescribed 
mean curvature equation, Wlu=H(1 +IDuI2)3!2, in a domain Q. Show that 
condition (16.60) with eo = 0 is necessary for the existence of a classical solution. 
It turns out that this condition is also sufficient [GT 3]. 



Chapter 17 

Fully Nonlinear Equations 

In this chapter we consider the solvability of the classical Dirichlet problem for 
certain types of fully nonlinear elliptic equations; that is, nonlinear elliptic equations 
that are not quasilinear. A general second-order equation, on a domain D in IR", 
can be written in the form, 

(17.1) F[u] = F(x, u, Du, D2u) = 0, 

where F is a real function on the set r = D x IR x IR" x IR" x ", where IR" x" denotes 
the n(n + 1)/2 dimensional space of real symmetric n x n matrices. We denote 
points in r typically by Y = (x, Z, p, r) where xED, Z E IR, p E IR" and r E IR" x ". When 
F is an affine function of the r variables, the equation (17.1) is called quasilinear; 
otherwise, it is called fully nonlinear. When F is differentiable with respect to the r 
variables, the following definitions extend those in Chapter 10: 

The operator F is elliptic in a subset d/I of r if the matrix [Fi}{y)], given by 

i,j = 1, ... , n, 

is positive for all Y = (x, Z, p, r) E d/I. Letting A.(y), A(y) denote, respectively, the 
minimum and maximum eigenvalues of [Fi}{y)], we call F uniformly elliptic (strictly 
elliptic) in d/I, if A/). (1/A.) is bounded in d/I. If F is elliptic (uniformly elliptic, strictly 
elliptic) in the whole set r, then we simply say that F is elliptic (uniformly elliptic, 
strictly elliptic) in D. If u E C2(Q) and F is elliptic (uniformly elliptic, strictly elliptic) 
on the range of the mapping x t-+ (x, u(x), Du(x), D2u(x», we say that F is elliptic 
(uniformly elliptic, strictly elliptic) with respect to u. 

EXAMPLES 

(i) The Monge-Ampere Equation: 

(17.2) F[u] = det D2u - f(x) = O. 
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Here Fij(Y) is the cofactor of rij' and F is elliptic only for positive r. Accordingly, 
(17.2) will be elliptic only for functions u E C2(Q) that are uniformly convex at each 
point of Q and for such a solution to exist we must also have f positive. 

(ii) The Equation of Prescribed Gauss Curvature: Let u E C2(Q) and suppose the 
graph of u has Gauss curvature K(x) at the point (x, II(X», x E Q. It follows (see 
Section 14.6) that u satisfies the equation 

(17.3) 

which again will be elliptic only for uniformly convex u E C2(Q). More generally, 
examples (i) and (ii) may be combined into the family of equations of Monge
Ampere type, 

(17.4) F[u] = det D211 - f(x, u, Du) = 0, 

where f is a positive function on Q x IR x IR". 

(iii) Pucci's Equations: ForO < a ~ l/n,let.P"denotethesetoflinearuniformly 
elliptic operators of the form 

with bounded measurable coefficients aij satisfying 
ij 2 

a ~i~j ~ al~1 , 

for all x E Q, ~ E IR". Maximal and minimal operators M" and mGt are then defined by 

(17.5) M,,[u] = sup Lu, m,,[II] = inf Lu. 
LE!l'~ LE!l'~ 

The operators M., m. are fully nonlinear and are also related by M ,[ -II] = 
-m,,[u]. Furthermore, a simple calculation yields the formulae 

M,,[u] = aL1u + (1 - naYt'iD211), 

m,,[u] = aL1u + (1 - na)"6'1(D 2u) 

where "6'1 (r), "6'k) are the minimum, maximum eigenvalues of the matrix r. We can 
then consider the extremal equations 

(17.6) maEu] = f 
in the domain Q, for a given function f. Although the functions ((j 1, "6'" are not 
differentiable, the concept of ellipticity readily extends to embrace this situation, 
the equations (17.6) being in fact uniformly elliptic (see below). 

(iv) The Bellman Equation: When the family .P" in the preceding example is 
replaced by an arbitrary family .P oflinear elliptic operators we obtain the Bellman 
equation for the optimal cost in a stochastic control problem; (see [KV 2]). 
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Specifically let us consider a family .Ii' indexed by a parameter v belonging to a set 
V. Suppose that each L. E .Ii' has the form 

where a~, b~, c. are real functions on 0 for each i,j = 1, ... , n, v E V, and for each 
v E V, let f. be a real function on O. The Bellman equation now takes the form 

(17.8) F[u] = inf(L.u - f.) = O . 
• eV 

There are various ways of extending the concept of ellipticity to nondifferentiable 
F, for example by monotonicity or by approximation; (see Problem 17.1). For our 
purposes it suffices to have an extension to functions F which are Lipschitz con
tinuous with respect to the r variables. We then call the operator F elliptic in a sub
set dIi of r if the matrix [Fij] = [oFjorij] is positive wherever it exists in dIi, and 
uniformly elliptic in ~ if the ratio of maximum to minimum eigenvalues A/A is 
bounded in ~. Note that [FiJ exists for almost all r E Ill" X". With these definitions, 
it follows that the Bellman equation (17.8) is elliptic in 0 if for each x E 0, v E V, 

for all ~ E Ill", where A and A are positive functions in o. Moreover, the Bellman 
equation is uniformly elliptic in 0 if A/A E L 00(0). 

17.1. Maximum and Comparison Principles 

The maximum and comparison principles derived in Chapter 10 for quasilinear 
equations in general form are readily extended to fully nonlinear equations. We 
shall establish the following form of the comparison principle. 

Theorem 17.1. Let u, v E CO(Q) n C2(0) satisfy F[u] ~ F[v] in 0, u ~ von 00, 
where: 

(i) the function F is continuously differentiable with respect to the z, p, r variables 
in r; 

(ii) the operator F is elliptic on all functions of the form Ou + (1 - O)v, 
O~(J~I; 

(iii) the function F is non-increasing in z for each (x, p, r)E 0 x Ill" x IIl"X". 

It then follows that u ~ v in O. 
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Proof. Writing 

we obtain 

w = u - v, 

Ue = lJu + (1 - lJ)v, 
1 

aij(x) = f Fi/X, Ue, DUe, D2uo) dlJ, 

° 
bi(x) = f Fp.(x, uo, DUe, D2uo) dlJ, 

° 

c(x) = f Fz(x, uo, DUe, D2uo) dlJ, 

° 

Lw = aijD .. w + biD·w + cw 
'J ' 

= F[u] - F[v] ~ 0 inQ. 

Furthermore conditions (i), (ii) and (iii) imply that L satisfies the hypotheses of the 
weak maximum principle (Theorem 3.1), and thus w ~ 0 in Q. 0 

Weaker hypotheses are clearly possible in Theorem 17.1. Also, by virtue of the 
strong maximum principle (Theorem 3.5), we have that either U < v in Q or U and v 
coincide. A uniqueness result for the Dirichlet problem follows immediately from 
Theorem 17.1. 

Corollary 17.2. Let u, v E CO(Q) n C2(Q) satisfy F[u] = F[v] in Q u = von aQ 
and suppose that conditions (i) to (iii) in Theorem 17.1 hold. Then U == v in Q. 

Maximum principles, Holder estimates for solutions and boundary gradient 
estimates for fully nonlinear elliptic equations may often be inferred directly from 
the corresponding results for quasilinear equations. If u E C2(Q), we may write the 
operator F[u] in the form 

(17.10) 

where now 

F[u] = F(x, u, Du, D2u) - F(x, u, Du, 0) + F(x, u, Du, 0) 

= di(x, u, Du)Diju + b(x, u, Du), 

1 

aii(x, z, p) = f Fi/X, z, p, lJD 2u(x» dO, 

o 

b(x, z, p) = F(x, z, p, 0). 
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In particular, defining 

8(x, Z, p, r) = Fiix, z, p, r)PiPj, 

8* = 8/lpI 2, 

~(x, Z, p, r) = det Fiix, z, p, r), 

~* = ~l/n, 

we thus obtain from Theorems 10.3 and 10.4 the following theorem. 
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Theorem 17.3. Let F be elliptic in D and suppose there exist non-negative constants 
Jl.l and Jl.2 such that 

(17.11) 
F(x, z, p, 0) sign Z I I 

8* (or ~*) ~ Jl.l P + Jl.2 vex, z, p, r) E r. 

Then, if u E C°(Q) ("\ C2(Q) satisfies F[u] ~ 0, (=0) in D, we have 

(17.12) sup u(lui) ~ sup u+(lul) + CJl.2 
a oa 

where C = C(p.l' diam D). 

For equations of Monge-Ampere type a maximum principle analogous to 
Theorem 10.5 can be concluded directly from Lemma 9.4. 

Theorem 17.4. Let F be given by (17.4) and suppose there exist non-negativefunc
tions g E LI~c(lIiln), hE L 1(D) and a constant N such that 

(17.13) 
hex) n. 

If(x,z,p)l~g(p) VXED,lzl~N,pER, 

(17.14) f h dx < f g(p) dp == goo· 

a R" 

Then, ifu E CO(D) ("\ C 2(D) satisfies F[u] ~ 0 (=0) in D, we have 

(17.15) sup u(lui) ~ sup u+(lui) + C diam D + N, 
a iJa 

where C depends only on g and h. In particular, if F is given by (17.2), we obtain 

(17.16) 

while ifF is given by (17.3), the estimate (17.15) holds with C = C(n, K o), provided 

(17.17) Ko = fIK(X)' < Wn' 

a 
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To conclude this section we note that the preceding results and their proofs also 
extend to nondifferentiable functions F. In particular, we obtain as a generalization 
ofthe comparison principle (Theorem 17.1): 

'Theorem 17.5. Let u, v E CO(Q) n C2(U) satisfy F[u] ~ F[v] in a, u ~ von aa, 
where 

(i) F is locally uniformly Lipschitz with respect to the z, p, r variables in r; 
(ii) F is elliptic in a; 

(iii) F is non-increasing in zfor each (x, p, r)Ea x ~n X ~nxn; 
(iv) IFpl/A is locally bounded in r. 

I t then follows that u ~ v in a. 

As an application of Theorem 17.5 we see that the comparison principle will 
hold for the Bellman operators (17.8) provided (17.9) holds, c. ~ 0 for all v E V and 
Ib.i/A is locally bounded in a, uniformly in v. By virtue of the maximum principle 
for strong solutions (Theorem 9.1), all the results ofthis section carryover to func
tions u, v E W~o'cn(U). 

17.2. The Method of Continuity 

The topological methods of Chapter 11 are inadequate for the treatment of fully 
nonlinear elliptic equations or nonlinear boundary value problems. For these 
problems, we shall use a nonlinear version of the method of continuity (Theorem 
5.2). In principle, the continuity method involves the embedding ofthe given prob
lem in a family of problems indexed by a bounded closed interval, say [0, 1]. The 
subset S of [0, 1] for which the corresponding problems are solvable is shown to be 
nonempty, closed and open, and hence it coincides with the whole interval. As in the 
quasilinear case in Chapter 11, the linear theory is again vital but in the present 
situation it is applied to the Frechet derivative of the operator F in order to 
demonstrate the openness of the solvability set S. 

We commence with an abstract functional analytic formulation. Let ~1 and ~2 
be Banach spaces and F a mapping from an open set U E ~1 into ~2' The mapping 
F is called Frechet differentiable at an element u E ~1 if there exists a bounded linear 
mapping L: ~ 1 --+ ~2 such that 

(17.18) IIF[u + h] - F[u] - Lhll"/lIhll,,, --+ 0 

as h --+ 0 in ~ l' The linear mapping L is called the Frechet derivative (or differential) 
of F at u and will be denoted by F u' When ~ 1, ~2 art; Euclidean spaces, ~n, ~m, the 
Frechet derivative coincides with the usual notion of differential, and, moreover, the 
basic theory for the infinite dimensional case can be modelled on that for the finite 
dimensional case as usually treated in advanced calculus; (see for example [DI]). 
In particular, it is evident from (17.18) that the Frechet differentiability of Fat u 
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implies that F is continuous at u and that the Fn!chet derivative F u is determined 
uniquely by (17.18). We call F continuously differentiable at u if F is Frechet differ
entiable in a neighbourhood of u and the resulting mapping 

is continuous at u. Here E(~l' ~2) denotes the Banach space of bounded linear 
mappings from ~1 into ~l with norm given by 

The chain rule holds for Frechet differentiation, that is, if F: ~ 1 -+ ~2' G: 
~2 -+ ~3 are Frechet differentiable at u E ~b F[u] E ~2' respectively, then the 
composite mapping Go F is differentiable at u E ~1 and 

(17.19) 

The theorem of the mean also holds in the sense that if u, v E ~1' F: ~1 -+ ~2 is 
differentiable on the closed line segment y joining u and v in ~1' then 

(17.20) IIF[u] - F[v]lltl2 ~ Kllu - vlltl" 

where 

K = sup IIF wll. 
wey 

With the aid of these basic properties we may deduce an implicit function theorem 
for Frechet differentiable mappings. Suppose that ~ l' ~2 and X are Banach spaces 
and that G: ~1 x X --+ ~2 is Frechet differentiable at a point (u, 0"), u E ~b 0" E X. 
The partial Frechet derivatives, G tu. ,,), Gfu. ,,) at (u, 0") are the bounded linear mappings 
from ~1' X, respectively, into ~2 defined by 

for h E ~1' k E X. We state the implicit function theorem in the following form. 

Theorem 17.6. Let ~1' ~2 and X be Banach spaces and G a mappingfrom an open 
subset of~ 1 x X into ~2' Let (uo, 0"0) be a point in ~ 1 X X satisfying: 

(i) G[uo,O"o] = 0; 
(ii) G is continuously differentiable at (uo, 0"0); 

(iii) the partial Frechet derivative L = G luo. "0) is invertible. 

Then there exists a neighbourhood .AI of 0"0 in X such that the equation G[u, 0"] = 0, 
is solvable for each 0" E .AI, with solution u = U" E ~ l' 
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Theorem 17.6 may be proved by reduction to the contraction mapping principle 
(Theorem 5.1). Indeed the equation, G[u, 0] = 0, is equivalent to the equation 

u = Tu == u - L - IG[U, (1], 

and the operator T will, by virtue of (17.19) and (17.20), be a contraction mapping 
in a closed ball B = B~(uo) in ~ 1 for <5 sufficiently small and (1 sufficiently close to (10 

in X; (see [01] for details). One can further show that the mapping F: X -+ ~l 

defined by (1 -+ u"for (1 E %, u" E B, G[u", (1] = Ois differentiable at (10 with Frechet 
derivative 

F"o = -L -lGtuo,"o)' 

In order to apply Theorem 17.6 we suppose that ~l and ~2 are Banach spaces 
with F a mapping from an open subset U c ~l into ~2' Let rjJ be a fixed element in 
U and define for u E U, t E ~ the mapping G: U x ~ -+ ~2 by 

G[u, t] = F[u] - tF[rjJ]. 

Let Sand E be the subsets of [0, 1] and ~l defined by 

(17.21 ) 
S = {tE[O, l]IG[u,t] = 0 for some UEU}, 
E = {u EUIG[u, t] = 0 for some tE [0, I]}. 

Clearly 1 E S, rjJ E E so that Sand E are not empty. Let us next suppose that the 
mapping F is continuously differentiable on E with invertible Frechet derivative F u' 

It follows then from the implicit function theorem (Theorem 17.6) that the set S is 
open in [0, 1]. Consequently we obtain the following version of the method of 
continuity. 

Theorem 17.7. The equation F[u] = 0 is solvablefor UEU provided the set S is 
closed in [0, 1]. 

Let us now examine the application of Theorem 17.7 to the Dirichlet problem for 
fully nonlinear elliptic equations. We assume that the function F in equation (17.1) 
belongs to C2,a(f) and for the Banach spaces ~l and ~2 take ~l = C2,a(Q), 
~2 = Ca(Q) for some a E (0, 1). Clearly the operator F defined by (17.1) maps ~l 
into ~2' and furthermore by calculation we see that F has continuous Frechet 
derivative F u given by 

(17.22) 
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where 

FiJ{x) = Fiix, u(x), Du(x), D2u(x», 

i 2 b (x) = F p/X, U(X), Du(x), D U(X», 

C(X) = Fix, u(x), Du(x), D2u(x»; 

(see Problem 17.2). We cannot expect the mapping Fu to be invertible on all of 
C2"(Q) and we accordingly restrict F to the subspace m1 = {UEC2"(Q)lu = Oon 
aD}, (already used in Section 6.3). The linear operator L will then be invertible for 
any u E C 2"(Q) for which L is strictly elliptic and c ~ 0 in D, provided aD E C 2 " 

(Theorem 6.14). By means of Theorem 17.7 the solvability of the Dirichlet problem 
is now reduced to the establishment of apriori estimates in the space C 2"(Q). 

Theorem 17.8. Let D be a bounded domain in IR" with boundary aD E C2", 0 < (X 

< 1, U an open subset of the space C2 '"(Q) and </J a function in U. Set E = {uEUI 
F[u] = aF[</J] for some a E [0,1], u = </J on aD} and suppose that FE C2"(f) 
together with 

(i) F is strictly elliptic in D for each u E E; 
(ii) Fix, u, Du, D2u) ~ Ofor each u E E; 

(iii) E is bounded in C2 '"(Q); 
(iv) E cU. 

Then the Dirichlet problem, F[u] = 0 in D, u = </J on aDis solvable in U. 

Proof. We can reduce to the case of zero boundary values by replacing u with 
u - </J. The mapping G: m1 x IR ~ m2 is then defined by taking t/I == 0 so that 

G[u, a] = F[u + </J] - aF[</Jl 

It then follows from Theorem 17.7 and the remarks preceding the statement of 
Theorem 17.8, that the given Dirichlet problem is solvable provided the set S is 
closed. However the closure of S (and also E) follows readily from the boundedness 
of E (and hypothesis (iv» by virtue of the Arzela-Ascoli theorem. 0 

When specialized to the case of quasilinear equations, Theorem 17.7 is some
what weaker than Theorem 11.8. For the quasilinear case, estimates in Cl.P(Q) for 
some PE(O, 1) will imply, by the Schauder theory, estimates in C2"(Q). The re
quirement FE C2(f) ca'n be weakened (Problem 17.3), but in order to assure the 
desired Fn!chet differentiability of F we still need smoother coefficient hypotheses 
than those of Theorem 11.8. 

Theorem 17.8 reduces the solvability of the Dirichlet problem for fully non
linear elliptic equations to a series of derivative estimates extending Steps I to IV 
in the existence procedure for the quasilinear case as described in Chapter 11. The 
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fully nonlinear problem is in general more involved since the estimation of second 
derivatives is required. In the ensuing sections we shall establish second derivative 
estimates for various types of equations including the examples mentioned at the 
beginning of this chapter. In certain cases, these estimates will be insufficient for the 
direct application of Theorem 17.7 and some modifications will be necessary. In 
particular, the nonsmoothness of the function F in the Bellman equation (17.8) is 
overcome through approximation. For uniformly elliptic equations we shall take 
U = C2 , '"(Q) (so that hypothesis (iv) becomes redundant) while for equations of 
Monge-Ampere type, U will be the subset of uniformly convex functions and hy
pothesis (iv) is ensured by the positivity of the function f. While the family of 
operators, 

F[u; 0] = F[u] - uF[q,], UE [0,1] 

suffices for the applications in this chapter, it evidently can be replaced by any 
family 

F[u; u] = F(x, u, Du, D2u; u) 

with FE C 2(F x [0, 1]), F[u; 0] = F[u], for which the Dirichlet problem, 
F[u; 1] = 0 in a, u = q, on aa, is solvable. 

17.3. Equations in Two Variables 

For fully nonlinear equations in two variables, the Holder gradient estimates in 
Sections 12.2 and 13.2 enable the a priori estimation required for hypothesis (iii) 
in Theorem 17.8 to be reduced to estimation in C 2 (0). To show this, we assume that 
u E C3(Q) is a solution of(17.1) in a and differentiate with respect to the variable Xk' 

thereby obtaining the equation 

(17.23) 

where the arguments of the partial derivatives F ii , F Pi' F., F Xk are x, u, Du, D2u. 
Setting w = Dku, f = FXk(x, u, Du, D 2u), we may write (17.23), in the notation of 
the preceding section, as 

Consequently, if F is elliptic with respect to u, the first derivatives of u will be solu
tions of linear elliptic equations in a. Accordingly, taking n = 2, and letting A, A, Jl. 
satisfy 

(17.24) o < AI~12 ~ FiJ{x, u, Du, D2u)~i~j ~ AI~12, 

IFp , F., Fx(x, u, Du, D2u)1 ~ AJl., 



17.3. Equations in Two Variables 451 

for all nonzero ~ E ~2 we have from Theorem 12.4 or 13.3: 

Theorem 17.9. Let U E C3(Q) satisfy F[u] = 0 in 0 c ~2, where FE C1(r), F is 
elliptic with respect to u and (17.24) is satisfied. Then for any 0' ceO, we have the 
estimate 

(17.25) 2 C 2 } [D u],,;n' ~ dOt {ID ulo;n + p.d(1 + IDu I1;n) 

where C and (X depend only on A/A., and d = dist (0', 00). 

To derive the corresponding global estimate we return initially to the general 
case n ~ 2 and assume that 00 E C3, U E C3(0) n C2(Q) and u = cp on 00 where 
cp E C3(Q). Let us fix a point Xo E 00 and flatten the part of 00 in a ball B = B(xo), 
centered at xo, by a one-to-one mapping 1/1 from B onto an open set D c ~n such 
that 

Writing 

I/I(B n D) c ~~ = {xE~nlxn > O}, 

I/I(B noD) c a~~ = {x E ~nlxn = O}, 

1/1 E c3(B), 1/1-1 E C3(D). 

y = I/I(X), 

we then have 

w = DykCP on B n aD, k = 1, ... , n - 1 

and, using (17.23), we obtain in B n 0 the equation 

(17.26) 

Consequently, if n = 2 and the hypotheses of Theorem 17.9 are satisfied, we con
clude, from the arguments of Sections 12.1 and 12.2 or 13.1 and 13.2, a Holder 
estimate for Dw in a neighbourhood of xo, for the case k = 1. Furthermore, for any 
D' c c D, Yo E D+ n D', R ~ d/3, where D+ = I/I(B nO), d = dist (D' n D+, aD), 
we have 

f ID~wI2 dy ~ CRn-2+2"{(1 + Jl)(1 + IDuI1;n) + ID3CPlo;n}2, 

BRnD+ 
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where a = a(A/A, 1/1) > 0 and C = C(A/A, 1/1, diam Q), Using equation (17.26) in 
the case k = 2, we then obtain 

(17.27) f ID;uI 2 dy ~ CR"-2+2a{(l + J.L)(l + IDull;O) + ID\l>lo;0}2 
BR"D+ 

and the desired global Holder estimate follows by Morrey's estimate, Theorem 7.19. 

Theorem 17.10. Let u E C3(Q) n C2(Q) satisfy F[u] = 0 in Q c ~2, U = cf> on cQ 
where FE C1(r), F is elliptic with respect to u, cQ E C3, cf> E C3(Q) and (17.24) is 
satisfied. Then we have the estimate 

(17.28) 

where a and C depend only on A/A and Q. 

As a consequence of Theorem 17.10 (and the regularity result, Lemma 17.16) 
the space C2 , a(Q) in hypothesis (iii) of Theorem 17.8 can be replaced by C2(Q), 
provided cQ E C3 and cf> E C3(Q). For certain equations the necessary estimation of 
second derivatives can be achieved through interpolation, as in the estimation of 
first derivatives in Chapter 12. Indeed, let us assume the following structure con
ditions: 

(17.29) o < AI~12 ~ Fi){x, z, p, rK~j ~ AI~12 

IF p , Fz(x, z, p, r)1 ~ Jl.A, 

IFx(x, z, p, r)1 ~ J.LA(l + Ipi + Irl), 

for all nonzero ~ E ~2, (x, z, p, r) E T, where A is a nonincreasing function of 1 z I, 
and A and Jl. are nondecreasing functions of I z I. The estimates (17.25) and (17.28) 
will then be valid with ..1.= A(M), A = A(M), Jl. = J.L(M) where M = 11110;0' 
Consequently, with the aid of the interpolation inequalities, Lemmas 6.32 and 6.35, 
we can estimate the norms lulta;o, luI2.a;0 in terms of M. 

Theorem 17.11. Let u E C3(Q) satisfy F[u] = 0 in Q c ~2 and assume the structure 
conditions (17.29). Then we have the interior estimate 

(17.30) 

where a > 0 depends only on A/A and C depends on A/A, Jl. and I u 10; o. In addition, if 
u E C3(fJ), cQ E C3 and u = cf> on cQ for cf> E C3(Q), we have the global estimate 

(17.31) 

where a> 0 depends on A/A and Q, and C depends on A/A, J.L, Q and lulo;o' 
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We remark here that the hypotheses of Theorems 17.8, 17.9 and 17.10 can be 
weakened to permit FE Co, 1(0, u E W3.2(O) and 4J E W 3 , 2(0) n C2.IJ(Q), (with 
the structure conditions (17.24), (17.28) holding almost everywhere in 0, r, 
respectively). The differentiation of equation (17.1) is accomplished with the aid of a 
generalization of the chain rule (Theorem 7.8). The structure conditions (17.29) 
may also be relaxed to correspond with the natural conditions for quasi linear 
equations; (see Notes). 

By combining Theorems 17.3, 17.8 and 17.11, we obtain an existence theorem 
for the Dirichlet problem. 

Theorem 17.12. Let 0 be a bounded domain in 1R2 with boundary 00 E C3 and let 
4J E C3(Q). Suppose that the operator F satisfies F z ~ 0 in r together with the structure 
condition (17.29). Then the classical Dirichlet problem, F[u] = 0, u = 4J on 00, is 
uniquely solvable, with solution u E C2 • a(Q) for all 0( < 1. 

Note that for the direct application of Theorem 17.8 we require smoother F; the 
full strength of Theorem 17.12 then follows by approximation of F and the estimate 
(17.31). Similar approximation also yields an existence theorem for equations of 
Bellman-Pucci type which we take up in Section 17.5. 

17.4. Holder Estimates for Second Derivatives 

We derive in this section interior Holder estimates for second derivatives of solu
tions of fully nonlinear elliptic equations under the key assumption that the func
tion F is a concave (or convex) function of the r variables. This restriction, which 
was not necessary in the two variable case of the preceding section, still enables us 
to cover the equations of Monge-Ampere and Bellman-Pucci type. To illustrate 
the main features of the method, we first consider equations of the special form 

(17.32) 

(i) F is uniformly elliptic with respect to u, so that there exist positive constants 
A, A such that 

(17.33) 

for all ~ E IR"; 
(ii) F is concave with respect to u in the sense that F is a concave function on the 

range of D 2u. 
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Let Y be an arbitrary unit vector in IRn and differentiate equation (17.32) twice in 
the direction y. We thus obtain 

(17.34) FijDijyU = Dyg, 

FijDijyyU + Fij.k1DijyuDklyU = Dyyg, 

where 

is nonpositive by virtue of the concavity of F. Consequently, the function w = 
Dyyu satisfies the differential inequality 

(17.35) 

in Q. We now invoke the weak Harnack inequality from Section 9.7. Let BR, B2R be 
concentric balls in Qofradii R, 2R, respectively, and set for s = 1,2, 

Ms = sup w, 
BsR 

ms = inf w. 
BsR 

Applying Theorem 9.22 to the function M 2 - w, we thus obtain 

(17.36) 

To conclude a Holder estimate for w from (17.36), we need a corresponding 
inequality for - w, which we obtain by considering (17.32) as a functional relation
ship between the second derivatives of u. To begin with, using the concavity of F 
again, we have for any x, y E Q, 

(17.37) FiJ{D 2u(y))(Diju(x) - Diju(y)) ~ F(D 2u(x)) - F(D 2u(y)) 

= g(x) - g(y). 

We now get a relationship between pure second derivatives of u by means of the 
following matrix result (from [MW]). 

Lemma 17.13. Let SEA, A] denote the set of positive matrices in IRn xn with eigen
values lying in the interval [A, A], where 0 < A < A. Then there exists ajinite set of 
unit vectors, Yl' ... , YN E IRn and positive numbers ..1.* < A*, depending only on n, A 
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and A such that any matrix d = [aij] E SEA, A] can be written in the form 

N N 

(17.38) d = L 13k Yk @ Yb . jj - "13 I.e. a - L, k YkjYkj, 
k;l k;l 

where ,1,* ~ 13k ~ A*, k = 1, ... , N. Furthermore the directions Yl"'" YN can be 
chosen to include the coordinate directions ej, i = 1, ... , n, together with the directions 
(1/fi)(ej ± e), i < j, i,j = 1, ... , n. 

The proof of Lemma 17.13 is deferred until the end of this section. Applying 
Lemma 17.13 to the matrix F jj , we obtain from (17.37) the inequality 

N 

(17.39) L f3k(Wk(y) - wk(x» ~ g(y) - g(x) 
k;l 

the vectors Yl, ... , YN and numbers ,1,*, A* depending only on n, A, A. Setting 

s = 1,2; k = 1, ... , N, 

we have that each of the functions Wk satisfies (17.36) so that by summation over 
k # 1 for some fixed 1, we obtain 

~ C{L (M2k - M lk) + R2ID2glo;n} 
ko#' 

~ C{w(2R) - w(R) + R2ID2glo;n} 

where, for s = 1, 2, 

N N 

w(sR) = L osc Wk = L (Msk - mSk) 
k;l B.R k;l 

By (17.39), we have for x E B2R , Y E BR 

f3,(W,(y) - w,(x» ~ g(y) - g(x) + L f3k(Wk(X) - wk(y» 
ko#' 
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so that 

and hence 

(17.40) 

where C again depends only on n, ,t, A. By setting w = W, in (17.36), adding this to 
(17.40) and summing over I = 1, ... , N, we therefore obtain 

hence 

for () = 1 - 11C. Holder estimates for the functions wk , k = 1, ... , N now follow 
from Lemma 8.23, and by using the last assertion of Lemma 17.13, we obtain a 
Holder estimate for D2u: For any ball BRo c Q and R ~ Ro, 

(17.41) 

where C and (X are positive constants depending only on n, ,t and A. 

In terms of the interior Holder norms the estimate (11.41) may be expressed in 
the form 

(17.42) 

where C, (X depend on n, ,t and A. 
Let us now proceed to the general case (17.1) with F E C2(T). Corresponding to 

conditions (i) and (ii) we suppose: 

(i)' F is uniformly elliptic with respect to u, so that there exist positive constants 
,t, A such that 

(17.43) 

for all e E IR"; 
(ii)' F is concave with respect to r on the range of D2u. 
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Again we differentiate twice with respect to a unit vector y, to obtain the equa
tions 

(17.44) 

FjjDjjyU + Fp.Djyu + FzDyu + yjFx• = 0, 

FijDjjnu + Fjj.klDjjyuDklyU + 2Fjj.PkDjjyuDkyU 
+ 2Fjj.zDjjyuDyu + 2YkFjj.XkDijyu + F PiDinU 
+ Fp.pjDiyuDjyu + 2Fp.z DiyuDyu + 2YjFpi.XjDiyU 
+ FzDnu + Fzz(D yu)2 + 2YiFu.Dyu + YjyjFx,xj = 0 

Using the concavity of F we now obtain, in place of(17.35), the differential inequality 

(17.45) 

where 

Ajjy = 2Fij.PkDkyU + 2Fjj.zDyu + 2YkFjj.Xk + yjFp., 

By = Fp.pjDjyuDjyu + 2Fp.zDiyuDyu + 2YjFp,.xJDiyU 
+ FzDnu + Fzz(D yu)2 + 2Yi Fu. Dyu + YiyjFx•xJ · 

The third derivatives of U in (17.45) are handled analogously to the second deriva
tives of u in the derivation of the Holder gradient estimate (Theorem 13.6). Let us 
first choose directions Yl' ... , YN in accordance with the full statement of Lemma 
17.13 applied to the matrix [F ij]. Set 

M2 = sup ID 2ul, 
n 

k = 1, ... , N, 

(if necessary we replace .Q by a subdomain to ensure the finiteness of M 2)' We obtain 
from (17.45) 

(17.46) 

where C = C(n) and 

Ao = sup {IF,pIID 2ul + IF,zllDul + IF,xl + IFpl}, 
n 

Bo = sup {IFppIID2UI2 + IFpzllD2uIIDui + IFpxIID2uI 
n 

where F,p = [F jj.PkJi.j.k=I ..... n' etc., are evaluated at (x, u, Du, D2u). We now 
multiply (17.46) by hk and sum from 1 to N to obtain 

N 

(17.47) r. FijDjhkDjhk - !FijDijv ~ C(Ao1D3u l + Bo)/(1 + M 2), 
k=1 
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where 

By our choice of Yk' we can estimate 

II 

ID3U I2 = L IDijl uI2 
i,j,l= 1 

N 

~ 4(1 + M2)2 L I Dh,Y, 
k=l 

and by the ellipticity condition (17.43), 

N N 

L FijDjhkDjhk ~ A. L IDhk 12• 
k= 1 k= 1 

Consequently, for e E (0, 1) and 

k = 1, ... , N, 

we have, by combining (17.46) and (17.47), 

and hence, by the Cauchy inequality, 

(17.48) 

where 

__ C(n) (A~ Bo) 
J.I. - A. A.e + 1 + M2 . 

We are now ready to apply again the weak Harnack inequality (Theorem 9.22). 
Let BR, B2R be concentric balls in Q' and set, for s = 1,2, k = 1, ... , N, 

W/c.s = supw, 
B.R 

N N 

w(sR) = L osc hk = L (Mks - mb)' 
k=lB.R k=l 
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Applying Theorem 9.22 to the functions llk2 - W k , we thus obtain 

(17.49) 

where p and C are positive constants depending only on n and A/A.. Using the in
equalities 

llk2 - Wk ~ Mk2 - hk - 2u.v(2R), 

llk2 - W kl ::; M k2 - M kI + 2£w(2R), 

we can conclude from (17.49) a similar inequality for the functions hk ; namely 

Then summation over k =1= I for some fixed I yields 

(17.50) tPp• r (L (Mk2 - hk»)::; N1/p L (Mk2 - hk) 
k*l k*l 

::; C {(1 + £) w(2R) - w(R) + JiR2}, 

where C = C(n, A/A) as before. To compensate for not having the inequality cor
responding to (17.48) for the functions - hk , we again resort to equation (17.1), so 
that using the concavity of F (condition (ii)'), we have 

where 

FiJ{y' u(y), Du(y), D 2u(y»(DijU(Y) - Diju(x» 

::; F(y, u(y), Du(y), D 2u(x» - F(y, u(y), Du(y), D 2u(y» 

= F(y, u(y), Du(y), D 2u(x» - F(x, u(x), Du(x), D 2u(x» 

::; Dolx - YI, 

Do = sup {lFiY, u(y), Du(y), D 2u(x» I 
X,YEn 

+ I Fz(Y, u(y), Du(y), D 2u(x» I I Du(y) I 
+ I Fp(Y, u(y), Du(y), D 2u(x»IID 2u(y)I} 

N ow by Lemma 17.13 and our choice of Yk, 

N 

= L Pk(y) (DYkYk u(y) - DYkYku(x» 
k=1 

N 

= 2(1 + M 2) L Pk(hk(y) - hk(x», 
k= 1 
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where 

k = 1, ... , N, 

and A.. / A., A· / A. depend only on nand A/A.. Consequently, for x E B 2R' Y E B R, 

N 

L fJk(hk(y) - hk(x» ~ CA.jiR, 
k=l 

where 

and hence for fixed 1, 

h,(y) - m/2 ~ ;. {CA.jiR + A· L (Mkl - hk(Y»} 
k~' 

~ C{fiR + L (Mkl - hk(Y)}, 
k~' 

where C = C(n, A/A.). Therefore by (17.50), we obtain, for 1= 1, ... , N, 

where C = C(n, A/A.). By adding the above inequality for 1 = k to (17.49) and sum
ming over k, we thus obtain 

w(2R) ~ C{(1 + e)w(2R) - w(R) + jiR + jiR2; 

hence 

w(R) ~ (jw(2R) + C{ew(2R) + fiR + jiR2} 

for (j = 1 - 1/C. Finally, by fixing e = (1 - (j)/2C we arrive again atthe oscillation 
estimate 

w(R) ~ /5w(2R) + C(jiR + jiR2), 

where 0 < J < 1 and C, J depend only on n and A/A.. The desired Holder estimates 
now follow immediately from Lemma 8.23. Namely, for any ball BRo c D and 
R ~ Ro, we have 
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where C and IX are positive constants depending only on n and A/A.. The resultant 
interior estimate is formulated in the following theorem. 

Theorem 17.14. Let u E C4 (Q) satisfy F[u] = 0 in Q where FE C2(r), F is elliptic 
with respect to u and satisfies (i)' and (ii)/. Thenfor any Q/ ceQ, we have the estimate 

(17.52) 

where IX depends only on n, A. and A, and C depends in addition on I u bu, dist (Q/, aQ) 
and the first and second derivatives of F other than Frr . 

A more explicit form ofthe estimate (17.52) is provided by (17.51), which exhibits 
the dependence of the constant C on I U 12; U and the derivatives of F. Under further 
concavity assumptions on F various terms in the expressions for Ao and Bo in 
(17.46) may be removed. For example, when F is jointly concave in z, p and r, we 
may take in (17.45) 

Aijy = 2YkFij,xk + yjFp., 

By = 2YjFp.,xjDiyU + FzDyyu + 2YiFz,x.DyU + YiyjFx,xj 

and hence in (17.46) 

Ao = sup {IFrxl + IFpl}, 
u 

Bo = sup {IFpxIID2UI + IFzIID 2ul + IFzxliDul + IFnI}. 
U 

Consequently, under the additional structure conditions 

(17.53) o < A.1~12 ~ FiJ{x, z, p, r)~i~j ~ AI~12 

IFpl, IFzl, IFrxl, IFpxl, IFzxl ~ Jl.A., 

IFxl, IFni ~ Jl.A.(1 + Ipi + Irl) 

for all nonzero ~ E IR", (x, z, p, r) E r, where A. is a non increasing function of I Z I and 
A and Jl. are nondecreasing functions of Izl, we may conclude from (17.51) the 
interior estimate, extending (17.42), 

lulL ~ C(1 + lui!)' 

where IX depends only on n, A/A., and C depends in addition on Jl., diam Q. With the 
aid of the interior interpolation inequality (Lemma 6.32), we thus obtain the follow
ing interior estimate. 
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Theorem 17.15. Let u E C4 (Q) satisfy F[u] = 0 in Q c ~n and suppose that F is 
concave (or convex) in z, p, r and satisfies the structure conditions (17.53). Then we 
have the interior estimate 

(17.54) 

where Q( > 0 depends only on nand A(M)/A(M), and C depends in addition on J1.(M), 
diam Q and M = lulo;a' 

We remark that the estimate (17.54) can in fact be proved under more general 
hypotheses corresponding to the natural conditions for quasilinear equations; (see 
Notes). We conclude this section with the proof of Lemma 17.13. 

Proof of Lemma 17.13. Letting ~"tx n denote the cone of positive matrices in ~"x", 
we may represent any .JII E ~"tx n in the form 

(17.55) 

where n' = n(n + 1)/2 = dim. ~"x n, Yk E ~n, k = 1, ... , n', and the dyadic matrices 
Yk ® Yk = [YkiYkj] are linearly independent. To see this we observe that any two 
matrices in ~"tx" are similar and hence in particular each .JII E ~"tx" is similar to the 
matrix .JII 0 whose diagonal and nondiagonal terms are, respectively, nand 1. But 
then 

n n 

.JII 0 = Lei ® ei + L (ei + e) ® (ei + e) 
i= 1 i,j= 1 

i<j 

so that (17.55) follows by an appropriate base change. Consequently, the family of 
sets of the form 

U(Yl"'" Yn') = {f PkYk ® YklPk > 0, k = 1, ... , n'}' 
k=1 

where Yk ® Yk are linearly independent, forms an open cover of S(A., A) c ~"tx n, and 
since S(A, A) is compact there exists a finite subcover. Accordingly, there exists a 
fixed set of unit vectors Yl' ... , YN' depending only on A, A and n such that any 
.JII E S(A, A) may be written 

N 

.JII = L Pk Yk ® Yk 
k=1 

with Pk ~ O. To get the assertion of the lemma we observe that at the outset we 
could have applied the above procedure to the matrix 

N 

.JII - A* L Yk ® Yk E S(A/2, A) 
k=1 
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for sufficiently small A.* (A.* = A.j2N is sufficient). Note that we can take A* = A. A 
similar consideration shows that any particular finite set of unit vectors may be 
included among the Yk' 0 

17.5. Dirichlet Problem for Uniformly Elliptic Equations 

We show in this section that the interior derivative estimates of the preceding sec
tion in fact suffice to demonstrate the solvability ofthe Dirichlet problem for certain 
types of uniformly elliptic equations, including those of Bellman-Pucci type. Since 
these estimates were established for C4 solutions, we first need a regularity result to 
link them with the hypotheses of the method of continuity as asserted in Theorem 
17.8. 

Lemma 17.16. Let 1I E C2(.Q) satisfy F[u] = 0 in.Q where F is elliptic with respect 
to u. Then, if FE Ck(r), k ~ 1, we have U E W~~2'P(.Q)forall p < 00; if FE Ck'''(r), 
o < IX < 1, we have U E Ck+ 2, "(.Q). 

Proof. We use a difference quotient argument similar to that in the proof of 
Theorem 6.17. Let us fix a coordinate vector e" 1 ~ I ~ n, and write 

v(X) = u(x + he,), hEIR 

1 
w = LI~u = h (u - v), 

ue = Ou + (1 - O)v, o ~ 0 ~ 1, 
1 

aij(x) = f Fij(x + Oh, lie, DUe, D2ue) dO, 

o 
1 

. f 2 b'(X) = F p.(x + Oh, Ue, DUe, DUe) dO, 

o 
1 

c(x) = f Fz(x + Oh, Ue, DUe, D2ue) dO, 

o 

f(x) = f F x,(x + Oh, Ue, DUe, D2ue) dO. 

o 

Then if we fix a subdomain .Q' c c .Q and take sufficiently small h, the difference 
quotient w will satisfy in .Q' the linear equation 

(17.56) 
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which will also be elliptic with uniformly continuous coefficients in Q'. The interior 
U estimates (Theorem 9.11) then yield bounds for IID2wllp;D" for Q" ceQ', 
independent of h, and hence by Lemma 7.24 we conclude u E W~';!(Q) for any 
p < 00. By the Sobolev imbedding theorem (Theorem 7.10), it then follows that 
u E c2 ,a(Q) for all IX < 1. Consequently, if F E Ci,a(r) for some IX, 0 < IX < 1, we 
may apply the Schauder regularity result (Theorem 6.17) to (17.56) to obtain 
u E c3 ,a(Q). Note that ifat the outset we are given u E C 2 , p(Q), for some f3 > 0, there 
is no need to use the U theory for this result. Lemma 17.16 is thus established for 
k = 1. Further interior regularity now follows by a straightforward iterative or 
"bootstrapping" procedure. 0 

With the aid of Lemma 17.16 we see that the estimates of Sections 17.3 and 17.4 
will hold for C2(Q) solutions of (17.1). In the case of Section 17.4, we should observe 
that u E Wio'cn(Q) is sufficient for the given proofs. To offset the lack of global C2 ,a(Q) 
estimates, we modify the function F near the boundary oQ as follows. Let {11m} be a 
sequence of functions in C~(Q) satisfying 0 ::::; 11 ::::; 1 in Q and I1m(X) = 1 whenever 
d(x, oQ) ~ 11m, and consider instead of F the operators F m given by 

(17.57) 

If F satisfies the hypotheses of Theorems 17.14 or 17.15, then so also does F m with 
structural constants depending possibly on 11m' We therefore obtain interior c2 ,a 
estimates for solutions ofthe equations, F m[u] = 0, ofthe same form as those given 
by Theorems 17.14 and 17.15. But near oQ, F m[u] = Au so that for appropriately 
smooth boundary data, C 2 , a estimates near oQ will follow from the Schauder theory, 
in particular from Lemma 6.5. Using this procedure we can now establish the follow
ing existence result. 

Theorem 17.17. Let Q be a bounded domain in IRn satisfying an exterior sphere con
dition at each boundary point and suppose thefunction FE C 2(r) is concave (or con
vex) with respect to z, p, r, non increasing with respect to z and satisfies the structure 
conditions (17.53). Then the classical Dirichlet problem, F[u] = 0 in Q, u = cp on 
oQ is uniquely solvable in C 2(Q) n C°(Q)for any cp E CO(oQ). 

Proof. Let us first consider the case of smooth boundary data, namely oQ E C 2 , P, 

cp E C2 , 1i(Q) for some 0 < f3 < 1. In view of the discussion preceding the theorem, 
we consider the approximating Dirichlet problems, 

(17.58) Fm[u] = 0, u = cp on oQ 

where F m is given by (17.57). In order to apply the method of continuity (Theorem 
17.8), we require apriori bounds in C2 , a(Q) for some IX > 0 for solutions of the 
problems 

(17.59) u = cp on oQ, o ::::; t ::::; 1. 
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Now the equations (17.59) continue to satisfy the hypotheses of Theorem 17.14, 
uniformly with respect to t; and consequently we have, for any solution U E C2 ,1I(Q) 
and Q' ceQ, an estimate 

where (X depends only on n, A.(M), A(M), and C depends in addition on Il(M), Q, Q', 
c/>,'ImandM = lulo:o. SinceF m[u] = L1u nearaQ, we therefore conclude, by Lemma 
6.5, the corresponding global estimate with Q' = Q and C depending in addition on 
aQ and p. Next we observe that the conditions, F. :::;; 0 and (17.53) together imply 
(17.11), for III = 112 = 1l(0), so that by Theorem 17.3, M = lulo:o is bounded 
uniformly in t and m. Therefore, by Theorem 17.8, we obtain the existence of a 
unique solution u = Um E c2 , 11m) of the Dirichlet problem (17.58). Since F m[u] = 
F[ u] for dist (x, aQ) ~ 11m, we then obtain, by the interior estimate (Theorem 17.15), 
the convergence of a subsequence of {um} (uniformly together with first and second 
derivatives on compact subsets of Q) to a solution u E C2 , II(Q) of the equation 
F[u] = 0 in Q. But in view of the representation (17.10) the barrier considerations 
for quasi linear equations, in particular Theorem 14.15, are applicable to the Dirichlet 
problems (17.58) and as a result we obtain that u E Co, I(Q) and u = c/> on aQ. The 
extension to continuous c/> and domains Q satisfying exterior sphere conditions 
follows similarly. 0 

By approximation, the condition F E C2(r) can be weakened in the hypotheses 
of Theorem 17.17, so that the derivatives appearing in the structure conditions 
(17.53) need exist only in the weak sense; (see Problem 17.4). Furthermore, by 
extending the above arguments slightly we can encompass the uniformly elliptic 
Bellman equations (17.8). In fact the necessary modifications can be illustrated 
more generally. Let FI, ... , Fm be operators ofthe form (17.1) and let G E c2(lRm) be 
a concave function whose derivatives satisfy 

m 

(17.60) 1:::;; L D,.G:::;; K 
v= 1 

for some constant K. We now define another operator F by 

Then if u E C4(Q) and Fl, ... , Fm all satisfy hypotheses (i)' and (ii)' in Theorem 
17.14, we obtain by differentiation, in place of (17.44), the equation 

m 

L DvGDyr = 0, .= I 
m m 

L D.GDyyr + L D.tGDyrDyF' = 0, 
v= 1 ',t= 1 
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so that from the concavity of G we have 

m 

L DvGDyyF'" ~ o. 
v= 1 

Consequently the analysis of Section 17.4 carries over with the derivatives DF, D2 F, 
m m 

replaced respectively by L Dv GDF'", L Dv GD2 F'". Using (17.60) we thus have, in 
v=1 v=1 

particular, that the estimate of Theorem 17.14 is applicable to the operator F 
provided the operators F v' v = 1, ... , m, satisfy the structural hypotheses and A 
and p. are replaced by KA and Kp. respectively. The existence result (Theorem 17.17) 
extends similarly. The equations of Bellman-Pucci type can then be treated by 
approximation. Namely, let us define for y E [Rm, 

Go(Y) = inf Yv 
\·=l ..... m 

and for h > 0, let Gh be the mollification of Go given by 

Gh(y) = h- n f p(Y ~ y) Go(.Y) dy, 
Rm 

where p is a mollifier on [Rm. Since Go is concave, it follows readily that Gh is also 
concave. Furthermore we have 

so that (17.60) holds with K = 1. It follows then that if FI, ... , Fm, Q and 4J satisfy 
the hypotheses of Theorem 17.17, the classical Dirichlet problems, 

u = 4J on aQ 

are uniquely solvable with solutions II = Uh satisfying an estimate 

where IX and C depend only on n, A, A, p., 4J and Q, together with a modulus of con
tinuity estimate on aQ depending on the same quantities. By approximation, the 
result extends to the limiting case h = 0 and, since the above estimates are inde
pendent of m, also to the case of a countable family of operators. Accordingly we 
have the following extension of Theorem 17.17. 

Theorem 17.18. Let Q be a bounded domain in [Rn satisfying an exterior sphere 
condition at each boundary point and sllppose the junctions Fl, F2, ... E C 2(T), are 
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concave with respect to z, p, r, non increasing with respect to z, and satisfy uniformly 
the structure conditions (17.53). Then the classical Dirichlet problem, 

(17.61) F[u] = inf {Fl[U], F2[U], ... } = 0 in Q, u = </J on aQ 

is uniquely solvable in C2(Q) n CO(Q)for any </J E CO(aQ). 

We observe that the Bellman equation (17.8) is included in Theorem 17.18 
provided the index set V is countable and the operators Lv and j~, satisfy the con
ditions: a~, b~, c V' f~ E C2(Q) and 

(17.62) AI~12 ~ a~~i~j ~ AI~12 

la~b;Q' Ib~bQ' icvb;Q' 1.f~12;Q ~ /1 A 

c\. ~ 0 

for all ~ E IR", v E V, where A, A and /1 are positive constants. Moreover it is evident 
that we can allow certain types of uncountable sets V, for example a separable 
metric space on which the mappings: v -+ a~(x), b~(x), cv(x),f,.(x) are continuous for 
each x E Q. In particular the Pucci equations (17.6) are covered provided f E 

C2(Q) n U'(Q). 

17.6. Second Derivative Estimates for Equations of 
Monge-Ampere Type 

In this section we turn our attention to equations of form 

(17.63) det D2u = f(x, u, Du). 

As indicated earlier, equation (17.63) is elliptic only when the Hessian matrix D2u 
is positive ( or negative) and it is therefore natural to confine our attention to 
convex solutions u and positive functions f. Writing equation (17.63) in the form 

(17.64) F(D 2u) = log det D 211 = g(x, lI, Dll), 

where g = log j, we then have by a calculation, 

(17.65) Fij = uij 

Fij,k[ = _UikU j[ = -FikFj[ 

where [uij] denotes the inverse of D211, Consequently the function F is concave on 
the cone of nonnegative matrices in IR" X", and the equation (17.64) will be uniformly 
elliptic on compact subsets of Q, with respect to any convex C2(Q) solution, If 
g E C2(Q x IR x IR") we can then apply the results of Section 17.4 to get interior 
Holder estimates for the second derivatives of solutions and subsequently, through 
Lemma 17.16, higher order estimates when g is appropriately smooth. We consider 
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now the question of interior and global bounds for the second derivatives of solu
tions, with approach reminiscent of the treatment of gradient estimates for non
uniformly elliptic equations in Chapter 15. 

First let us note from equation (17.44) that any pure second derivative Dyyu, of a 
solution of (17.64), satisfies the equation 

(17.66) 

and since U is conv~x we have also Dyyu > O. To estimate Dyyu from above, we take 
positive functions 1'/ E C2(Q), hE C2(1R") and set 

so that 

Diw Di1'/ (1 h Diyyu - = - + og )Pk DikU + -D ' 
w 1'/ yyU 

Dijw = DiWDjw + Dij 1'/ _ Di1'/Dj1'/ 
W w2 1'/ 1'/2 

+ (log h)PkP,DikUDj/u + (log h)PkDijk U 

Consequently, using (17.66) we obtain 

(17.67) (nh)-IF .. D.. >- D {Fij Dij1'/ _ FijDi1'/Dj 1'/ 
" 'J 'J W 7 yy U 2 

'1 '1 

+ (log h)PkP,FijDikUDj/u + (log h)PkFijDijkU} 

1 
+ FikFj/DijyuDk/YU - -- FijDiyyuDjyyU + Dyyg. 

Dyyu 

An obvious candidate for the function h is given by 

{3 > O. 

For then we have 

and hence 
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by (17.65). Next, if we assume the bounds 

(17.68) I Dg(x, II, DII)I, 

we have 

Dyyu(log h)PkFijDijkU + Dyyg 

= PDkuDyyu(gxk + gzDku + gp;Dikll) + gyy + 2gyz Dyll + 2g yPP iY U 

+ gzz(D yU)2 + 2gzp;DJ,uDiYU + gp;pjDikUDjkU 

+ gzD"yll + gp;DiJ'YU 

where C depends on /1, sup I Du I. 
n 

In order to handle the other terms in (17.67) we regard w = w(x, y) as a func-
tion on 0 x oB 1 (0) and suppose that w takes a maximum value at a point YEO and 
direction y. The derivative Dyyu(y) will then be the maximum eigenvalue of the 
Hessian D2u(y) and by a rotation of coordinates we can assume that D2u(y) is in 
diagonal form with y a coordinate direction. For global estimates we take 1'/ == 1 so 
that terms involving 1'/ are not present in (17.67). It then follows from (17.65) that 

at the point y, so that by choosing P sufficiently large we obtain an estimate for 
Dyyu(y) in terms of n, jJ. and I Du lo;n. 

The interior case is more delicate since 1'/ cannot be chosen as an arbitrary cutoff 
function (because of the term FijDijl'/). In this case we shall assume that u vanishes 
continuously on 00 and choose 1'/ = - u so that 1'/ > 0 in 0 and 

Furthermore since Dw(y) = 0, we have 
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at the point y. Now 

n 

= L Fyy Fii(Diyy u? + L FyyFii(DinU)2 
i*y i= 1 

n 

~ L Fii Fjj(Dijy U)2 
i,j= I 

17. Fully Nonlinear Equations 

at y, by virtue of our choice of coordinates. Taking account of the above estimates, 
in the differential inequality (17.67), we obtain 

where C = C(n, /1, I Du 10; 0), and hence 

(17.69) sup w ~ C, 
o 

where C = C(n, /1, lull; 0)' Finally, to estimate '1 = -u from below, we have, by the 
convexity of u, 

(17.70) 
u(x) inf u 

----~---

dist (x, aQ) "" diam Q 

for any x E Q. We formulate the resultant second derivative estimates as follows. 

Theorem 17.19. Let u E C 2(Q) be a convex soilition of(17.63) in a domain Q where 
f E C 2(Q x [R1 x [R1n) is positive in Q and g = logf satisfies (17.68). Then it'u E C2(Q), 
we have 

(17.71) 

where C depends on n, /1. lull; 0 and sup I D2 ul. If u E CO. I(Q) and 1I is constant on aQ, 
i'Q 

then for any Q' ceQ, we have 

(17.72) 

where C depends on n, /1, lull; 0 and diam Q, and do· = dist (Q', aQ). 
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When the function Il/n is convex with respect to the p variables, the estimate 
(17.71) may be derived by simpler means and moreover the result extends to more 
general functions F and solutions that are not necessarily convex (see Problem 
17.5). 

An estimate for the second derivatives of solutions of equation (17.64) on the 
boundary GO follows readily from equation (17.26). If we assume that 0 is uniformly 
convex, GO E C3 , and u = 4> on GO where 4> E C3(Q), then the first term on the right
hand side of (17.26) becomes 

(17.73) 

by virtue of(17.65). An estimate for the derivatives DYkYnu(xo) for Xo E Othen follows 
from Theorem 14.4 or Corollary 14.5. The remaining second derivative DYnYnu(xO) is 
estimated directly from equation (17.64). For, with respect to a principal coordinate 
system at Xo, we have (taking 4> == 0) 

(17.74) 

where "I' ... , "n-I are the principal curvatures at X o, and using (17.70), we thus 
infer a bound for Dnnu(xo). Therefore, we have proved the following global estimate 
for second derivatives. 

Theorem 17.20. Let Ii E C 3(Q) be a convex solution oIequation (17.64) in 0, where 
I E C 2(Q x IR x IRn) is positive and GO E C3 is uniformly convex. Then 

(17.75) 

where C depends on n, I Ii II ;0' I, GO, and u = 0 on GO. 

We remark here that the proof of Theorem 17.20 also extends to more general 
functions F, with possibly nonconvex solutions Ii; (see Problems 17.6, and 17.7). 

17.7. Dirichlet Problem for Equations of 
Monge-Ampere Type 

The considerations of the previous section reduce the solvability of the classical 
Dirichlet problem for equations of Monge-Ampere type to the establishment of C I 
estimates. For equations in two variables, we can then proceed directly through the 
method of continuity using the global Holder estimates for second derivatives 
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(Theorem 17.1 0). For higher dimensions, there also exist procedures requiring only 
interior second derivative estimates but these are more complicated than the method 
employed for the uniformly elliptic case in Section 17.5; (see Notes). In the next 
section, we shall treat the recently established global HOlder estimates for second 
derivatives that will enable us to align the general case with the two-variable case. 

Restrictions on the growth of the function f in (17.63) arise through the con
sideration of gradient estimates. For a convex function u in a domain D we clearly 
have 

(17.76) sup IDul = sup IDul 
U oU 

so that the estimation of the gradient of convex solutions of (17.63) reduces to 
estimation on the boundary only. As in the quasilinear case, such estimates are 
readily obtained by means of barrier constructions. In fact, let us assume the follow
ing structure condition, 

(17.77) O::%; f(x, z, p) ::%; Jl(lzl)d~lpIY 

forallx in some neighbourhood .. 4" ofoD,z E IR.lpl ~ Jl( Izl), wheredx = dist (x, aD), 
Jl is nondecreasing and p = }' - n - 1 ~ O. Then we have the following gradient 
estimate. 

Theorem 17.21. Let u E C°(Q) n C 2(Q), cp E c2(D) n CO.I(Q) be convexfimctions 
in the uniformly convex domain D, satisfying 

(17.78) det D2u = f(x, u, Du) in D, 

Then we have 

(17.79) sup IDIlI ::%; c, 
U 

Il = cp on oD. 

where C depends on n, Jl, p, .A-r
, D, I U lo;u and I cp II; U· 

Proof. Let B = B R(y) be an enclosing sphere for the domain D at the point Xo E aD 
and set 

w = cp - I/I(d) 

where d(x) = dist (x, oB) and 1/1 is given by (14.11), with v and k to be determined. 
Using a principal coordinate system for oB at Xo, we may then estimate 

= _1/1"( 1/1' )ft-I 
Ix - yl 

>- _,I," .!.. (,I,')ft-I 
or 'I' R . 
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while from the structure condition (17.77) we have 

I(x, u(x), Dw) ~ rJ1(M)d'W/f 
= 2 YJ1(M)(1jI't + 1 (dljl')/J 
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provided XEfl, 1jI'(d) ~ J1(M) + ID<t>I, where M = lulo;,Q' Choosing v = 
1 + 2YR"-1 J1, so that dljl' ~ 1, and then choosing k and a according to (14.14) (with 
J1 replaced by J1 + I D<t> I), and such that {x E a I d < a} C fl, we see that the convex 
function w will be a lower barrier at Xo for (17.63) and function u. Consequently, by 
the comparison principle (Theorem 17.1), we obtain 

u(x) - [I(XO) 
----~-C 

Ix - xol 

ford ~ a, where C depends on n,p, J1, ID<t>lo;,Q, M,..;to'" and R. Using the convexity of 
u, we have 

u(X) - u(xo) 
Ix - xol ~ ID<t>lo;,Q, 

for all x E a, Xo E ca, and the estimate (17.79) follows. D 

Note that the Monge-Ampere equation (17.2) is covered by Theorem 17.21 for 
bounded I, while the equation of prescribed Gauss curvature is encompassed only 
if the curvature K vanishes Lipschitz continuously on ca. Combining Theorems 
17.4, 17.8, 17.10, 17.20 and 17.21, we obtain the following existence theorem for 
equations of Monge-Ampere type in two variables. 

Theorem 17.22. Let Q be a uniformly convex domain in 1R2 with boundary cQE C3 . 

Suppose that f is a positive function in C2( Q x IR x IRn) satisfying f: ~ 0, together 
with the structure conditions (17.l3), (17.14) and (17.77) for n = 2, P = O. Then the 
classical Dirichlet problem 

(17.80) det D2u = I(x, u, Du) in a, u = 0 on ca, 
is solvable with solution u E C2, "(Q) for all a < 1. 

Proof. By virtue of Theorem 17.8 it suffices to have a uniform estimate in the space 
C2 '"(Q), for some a > 0, of the solutions of the Dirichlet problems, 

det D2u 
F[u] = f( D ) - 1 = I1F[<t>], x, u, u 

u = 0 on ca, 0 ~ 11 ~ 1, 

where <t> E C 2(Q) is uniformly convex and vanishes on cQ; (see Problem 17.8). 
When the quantity goo in Theorem 17.4 is infinite, such an estimate follows im
mediately from Theorems 17.4, 17.10, 17.20 and 17.21. Otherwise, we should, by 
possibly a new choice of <t>, ensure that F[ <t>] ~ 0; (for example by replacing <t> with 
the solution of the Dirichlet problem, det D 2u = inf f, II = 0 on cQ). D 

For Monge-Ampere equations in higher dimensions we have the following 
analogue of Theorem 17.22, as a consequence of the global estimate (Theorem 
17.26) in Section 17.8. 
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Theorem 17.23. Let Q be a uniformly convex domain in lRo with boundary j)Q E C4 . 

Suppose that f is a positive function in c2UJ x IR x IRO) satisfying fz ~ 0 together 
with the structure conditions (17.13), (17.14) and (17.77) for {3 = O. Then the classical 
Dirichlet problem (17.80) is solvable with solution u E C 3 • ~(Q) for aI/IX < 1. 

We note here that Theorems 17.20, 17.22 and 17.23 extend to general boundary 
values cP E C 4 (Q); (see [IC 2], [CNS]). 

Using the interior second-derivative estimates of Theorem 17.20, the above 
existence theorems can be extended to allow more general functions f. 

Theorem 17.24. Let Q be a uniformly convex domain in lRo and suppose that I is a 
positive junction in C2(Q x IR x IRO) satisfying Iz ~ 0 together with the structure 
conditions (17.13), (17.14) and (17.77). Then the classical Dirichlet problem (17.80) is 
solvable with solution u E C3'~(Q) n CO. l (Q) for aI/IX < 1. 

Proof. Let {j~} be a sequence of bounded functions in C 2(Q x IR x IRO) satisfying 
0< fm ~ I, j~ ~ 0 and j~ = I for Izl + Ipi ~ m and let {Q/} be an increasing 
sequence of uniformly convex C4 subdomains of Q satisfying Q/ ceQ, u Q/ = Q. 

By Theorems 17.22 and 17.23, there exists, for each m, a sequence {um/} of uniformly 
convex solutions of the Dirichlet problems. 

Using the bounds, Theorems 17.4, 17.21 and the interior estimates, Theorems 17.14, 
17.19, we obtain a subsequence converging uniformly, together with its first and 
second derivatives on compact subsets ofQ, to a solution Um ofthe Dirichlet problem 

Um = 0 on iJQ. 

But by Theorems 17.4, 17.21 again, it follows that for large enough m, Um = U is a 
solution of (17.80). 0 

For the special case of the equation of prescribed Gauss curvature (17.3) we now 
obtain from Theorem 17.24. 

Corollary 17.25. Let Q be a uniformly convex domain in lRo and K a positive junction 
in C 2(Q) nCo. 1(Q), satisfying 

(17.81) K = 0 on iJQ, 
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Then there exists a unique convexfimction u E C2(.Q) n Co. 1m) such that u = 0 on 
cQ and whose graph has Gauss curvature K(x) at each point x E Q. 

Both conditions (17.81) in Corollary 17.25 are necessary in some sense. In fact, 
let us suppose that in the general Monge-Ampere equation (17.4) the function f 
satisfies 

(17.82) 
. hex) 

f (x, z, p) ~ g(p) vex, z, p) E Q x fR x fR", 

where hand 9 are positive functions in L I(Q), Lloc(fR"), respectively. Then if 
u E C2(Q) is a convex solution of (17.4) in a domain Q, its normal mapping X coin
cides with Du and is one-to-one. Consequently, by integration we have 

J g(p) dp = f g(Du) det D2u 

and the condition 

(17.83) 

is thus necessary for the existence of a convex solution u. Furthermore the strict 
inequality 

(17.84) f h < goo 
Q 

is then necessary for the existence of a solution u whose normal mapping is not all 
of fR", in particular a solution !I E Co. 1(Q). 

Concerning the other condition in (17.81) we remark that by extension of the 
interior estimate (Theorem 17.19), we can permit arbitrary nonzero boundary 
values ¢ E Cl(Q) in Corollary 17.25 if and only if K = 0 on iJQ [TU]. The con
ditions (17.81) are analogous to the conditions (16.58), (16.60) for the equation of 
prescribed mean curvature (16.1). 
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17.8. Global Second Derivative Holder Estimates 

We consider in this section the global analogue, for equations of Monge-Ampere 
type, of the interior second-derivative Holder estimates of Theorem 17.14. The 
methods automatically embrace equations of the general form (17.1) provided we 
strengthen hypothesis (ii)' in Theorem 17.14 by requiring 

(17.85) 

for some positive constant Ao and all symmetric matrices ~ E ~"x". By (17.65) we 
see that the equations of Monge-Ampere type, when written in the form (17.64), 
satisfy (17.85) with Ao = (sup '(j n) - 2, where '(j n denotes the maximum eigenvalue of 

Q 

D 2u. Since the hypotheses for the global second-derivative Holder estimation 
guarantee, through the linear theory, stronger third-derivative estimates, it is 
convenient to formulate the results accordingly as follows. 

Theorem 17.26. Let Q be a bounded domain in Rn with boundary oQ E C 4 and let 
<P E C 4 (Q). Suppose that u E C 3 (Q) n C 4 (Q) satisfies F[u] = 0 in Q, u = <p on oQ, 
where FE C2(T), F is elliptic with respect to u and satisfies (i)', (ii)' together with 
(17.85). Then we have the estimate, 

(17.86) 

where C depends on n, A, A, Ao, aQ, I <p 14;Q, I U 12;Q and thejirst and second derivaties 
ofF 

Proof. Letting y denote a unit vector in ~", we can, by use of (17.85) in (17.43), 
improve the inequality (17.44) so that 

(17.87) FijDijy)'1I ~ -AijyDijyU - By + AoID2Dyll12 

~ -c 

by Cauchy's inequality, where C depends on n, Ao and Ao, Bo in (17.46). Let us now 
fix a point Xo E aQ and suppose that BR(y) is an exterior ball at Xo. The modulus of 
continuity of the derivatives Dyyu can be estimated at the boundary (in terms of 
their traces on aQ) by standard barrier arguments, as described for example in 
Remark 3 in Section 6.3. As shown there, the function w in (6.45) given by . 

satisfies 

in Q for sufficiently large T, (J depending on A, A and R. Consequently, if l: ~ 0 and 
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for x E aQ, I x - Xo I < 8, we obtain from (17.87) and the classical maximum principle 
(Theorem 3.1), the estimate 

(17.88) Dyyu(x) - Dyyu(xo} ::0; f. + Cw + 2 sup IDyyullx - x0 12/82 
8fl 

::0; t; + CI x - Xo I 

for any x E Q, where C depends on n, A, A, Ao, Ao, Bo, luI2;Q,diam Q, Rand (j. Now 
choosing directions "11' ... , "IN in accordance with Lemma 17.13 and using equation 
(17.1) itself. as in the proof of Theorem 17.14, we conclude from (17.88), the estimate 

(17.89) 

for any x E Q, where C depends in addition on the quantity Do in the proof of 
Theorem 17.14. 

The estimate (17.89) reduces estimation of the modulus of continuity of second 
derivatives on the boundary aQ to that of their traces on aQ. A similar result could 
also have been established by using the weak Harnack inequality at the boundary 
(Theorem 9.27), and moreover can be proved without requiring the condition 
(17.85). 

To proceed further we use (17.88) again to obtain a one-sided third derivative 
bound. Without loss of generality we may assume that II vanishes on aQ, and that 
aQ is flat in a neighbourhood of Xo E aQ, that is, for some (j > 0, 

B+ = Q n B,bo) C IW+, 

T = aQ n B.,lxo) c alR"+.. 

This follows since the form of (17.1), together with (17.85) and the hypotheses 
(i), (ii) in Theorem 17.8, are preserved by replacement of u with u - <b and by a C4 

coordinate change 1/1. The new constants A, A and Ao will, of course, depend on 1/1 (in 
particular on DI/I) as well as their original values. Therefore, restricting "I to 
tangential directions in alR"+ so that Dyyll = ° on T, we have from (17.88) 

for x E B+; and consequently 

(17.90) 

where C depends on l<bkQ and 1/1, as well as the quantities in (17.88). Setting 

it follows that for sufficiently large k (k ~ C), 
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for x E T, I x - Xo I :::; [)j2; that is, the function h has convex trace on oQ n BJ!2(xo). 
Furthermore, we see from the differentiated equation (17.23) that h satisfies a uni
formly elliptic equation, in particular 

where C depends on the quantities in the statement of Theorem 17.26. The above 
properties of the function h are utilized through the following remarkable lemma, 
whose proof we defer until the end of this section. 

(17.91) 

in B+ where L is uniformly elliptic in B+ and IIA is bounded. Then !lhlT is convex, we 
have jor any x, YET n B,j/ixo) and i = 1, ... , n - 1, the estimate 

(17.92) 
C 

ID;h(x) - D;h(y)1 :::; 1 + Iloglx _ yll 

where C depends only onn, sup AI A, sup II A, [) and sup I Dh I. 

Lemma 17.27 provides an estimate for the moduli of continuity at Xo of the 
second derivatives D;nu restricted to T. A similar estimate for the remaining non
tangential second derivative Dnnu follows immediately from (17.1) itself. But then 
the estimate (17.89) yields an estimate for the modulus of continuity of the full 
Hessian matrix D 2u at the boundary point Xo in terms of the quantities specified in 
the statement of Theorem 17.26, which in turn implies an estimate for the moduli of 
continuity of the principal coefficients of the differentiated equation (17.23). We 
can then use the LP theory, in particular Theorem 9.13, to conclude LP estimates for 
the third derivatives DijkU, i,j = I, ... , n, k = I, ... , n - 1, in a neighbourhood of 
the point Xo for any p < x. Similar estimates follow then for the remaining third 
derivative Dnnn II from (17.23) again. Using Morrey's estimate (Theorem 7.19), we 
thus obtain Holder estimates for D 2 1/ at Xo for any exponent ex < 1. On combination 
with the interior estimate (Theorem 17.14), as in the proof of Theorem 8.29, we 
finally infer global estimates in C 2 '''(Q) for any ex < 1. To complete the proof of 
Theorem 17.26 we simply apply the Schauder theory to the differentiated equation 
(17.23), thereby obtaining global C3 '''(Q) estimates for any ex < 1. 0 

Proof of Lemma 17.27. Since hiT is convex the derivatives Dih, i = 1, ... , n - I, 
exist almost everywhere on T and it suffices to prove (17.92) for such points x, y. 
The full result for all x, y follows from convexity and continuity. 

We may assume x = 0 and that after subtraction of a suitable affine function, 

(17.93) h(O) = 0 = D;h(O), i=I. ... ,n-1. 
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After a rotation of coordinates we may further assume that 

i = 2, ... , n - I, 

where IX ~ sup I Dh I ~ C. In the following we shall use the same letter C to denote 
constants depending only on the constants in the statement of the lemma. We wish 
to prove 

(17.94) 
C 

IX ~ ---
Iloglyll 

when I y I is sufficiently small, from which (17.92) will follow. Since IX = 0 implies the 
desired conclusion we may suppose IX > O. 

Writing x = (x', x n) = (x I' ... , Xn- I ,xn}for X E IRn, we have from the convexity 
of h on T that h(x', 0) ~ 0 and 

(17.95) h(x', 0) ~ h(y', 0) + IX(XI - YI) = IX(X I - /3), 

where /3 is defined by the equality. By taking x' = 0 and x' = y' in this relation, one 
sees that 

(17.96) 

We consider the function 

(17.97) 
IX IX 

w(x', xn) = 2 [(x I - /3)2 + x;] 1/2 + 2 (x I - /3) 

- IXYXn log [(XI - /3)2 + X;]112 - D(xn + Ix'j2 - Ex;). 

After suitable choice of positive constants y, f. < 1, and D, E > 1, depending only on 
the constants of the lemma, it will be seen that w provides a barrier with the pro
perties 

(17.98) 

and 

(17.99) w ~ h on oBt 

Assuming for the moment that the constants in w can be so chosen. we infer from 
the maximum principle that 
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Then since h(O) = w(O) = 0, we have, after setting x' = 0 in (17.97), dividing by Xn 

and letting Xn --+ 0, 

Dn w(O) ~ lim inf h(O, xn) ~ sup I Dh I ~ C, 
Xn-O Xn 

or 

- ~Y log fl - D ~ C. 

It follows from (17.96) that 

C+D C+D 
~ ~ ~ , 

Yllog fll yllogly'11 

proving (17.94). 
It remains to determine the constants in w. Setting p = [(x I - fl)Z + x;] I/Z, we 

obtain by direct calculation 

and 

A 
Lp ~

p 

so that for 0 < y ~ /z inf AI A we have 

L(p12 - yXn log p) ~ O. 

By now choosing the constant E sufficiently large (~t sup II A + n sup AI A) and 
D ~ 1, we can satisfy (17.98). 

To establish (17.99) we observe first that the inequality holds on Xn = O. For 

w(X',O) = ~(Xl - flt - Dlx'iz 

= ~(Xl - fl) - Dlx'iz ~ h(x', 0) if XI ~ fl 

= -Dlx'iz ~ 0 ~ h(x', 0) if Xl ~ fl. 

(by (17.95» 

On the hemispherical portion S of oB: we have that Xn + Ix'iz - Ex; ~ teZ pro
vided e is sufficiently small (depending on the choice of E). Since the other terms in 
ware bounded by sup IDhl if e < 1, a suitably large value of D makes 

w ~ -C ~ infh 

on S, which completes the proof of (17.94). 
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Finally, we remark that (17.94) implies (17.92) if Ix - yl ~ c, while IDhl ~ C 
yields the same inequality if I x - y I > c in B~2' 0 

The proof of the above lemma is taken almost directly from [CNS]. 

An Alternative Approach 

The approach to global second derivative Holder estimates given above is due to 
Caffarelli, Nirenberg and Spruck [CNS]. However, as we shall indicate now, the 
crucial Holder estimates for the mixed tangential normal second derivatives on 
the boundary also follow readily from Theorem 9.3.1. Furthermore this approach, 
due to Krylov [KV 5], also yields global regularity for the Bellman equation, 
(17.8). In fact we have the stronger version of Theorem 17.6. 

Theorem 17.26'. Let D be a bounded domain in 1Rn with boundary oD E C 3 and let 
<p E C 3 (.Q). Suppose that u E C 3 (.Q) n C 4 (D) satisfies F [u] = 0 in D, u = <p on oD, 
where FE C 2 (T), F is elliptic with respect to u and satisfies (i)" (ii)'. Then we have 
the estimate 

(17.86) 

where IX depends only on n, A. and A and C depends in addition on I u 12; Q and the first 
and second derivatives of F other than Frr • 

Proof The situation is reduced according to the proof of Theorem 17.26 to the 
consideration of the derivatives Din U, i = 1, ... , n - 1 on the flat boundary por
tion T. But now, instead of considering the differential inequality (17.91) satisfied 
by the normal derivative Dn u and applying Lemma 17.27, we consider the uni
formly elliptic differential equations 

dj Dij h = ik 
satisfied by the tangential derivatives h = Dk U, k = 1, ... , n - 1 in B+ and apply 
Theorem 9.31. A global Holder estimate for D2 u then follows independently ofthe 
moduli of continuity of the principal coefficients of the differentiated equation 
(17.23). 0 

We remark here, that by using the particular forms of the estimates (9.68), 
(17.51), we can avoid the barrier argument at the beginning of the proof of Theo
rem 17.26; (see Problem 13.1 with u replaced by (Dl u, ... ,Dn - 1 u) or [TR 14]). 
Also the present proof of Theorem 17.26 can be modified slightly so as to remove 
the restriction (17.85). To see this, we recall that the pure second derivatives, 
v = Dy)' u = Yi Y j Dij U, Y E o1R n+, satisfy in B+, uniformly elliptic differential in
equalities of the form 

F;j Dij v + Cij Dijy U ;;;; - C 

where by virtue of the differentiated equation (17.23), we may assume Cin = 0, 
i = 1, ... , n. The coefficients Cij and constant C will be bounded in terms of the 
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quantities in the statement of Theorem 17.26 (excluding .A.o). Now let us regard v as 
a function of both x and y in the domain D* = B+ X {y E aR."t. Ilyl < 2} C R.2n-i 
and extend the above operator so that 

n-\ 
- _ i 
Lv = Fij Dij v + 2 Cij D j " v + Ko L D" y, v ~ - C 

IJ i= 1 

in D* and Ko is chosen so that L is uniformly elliptic in D*. By appropriate 
extension of the barrier w to D*, for example by defining 

w(x, y) = w(x) + t' Iy _ jl2 

for constant.' and 1 jl = 1, we are again able to infer the one-sided third derivative 
bound (17.90), and the rest of the proof of Theorem 17.26 follows automatically. 

As a consequence of Theorem 17.26 we can deduce global smoothness of the 
solutions of the Dirichlet problems in Theorems 17.17, 17.18 when the boundary 
data are appropriately smooth. In fact, if F satisfies the structure conditions 
(17.53), we can, by interpolation, replace the dependence of the constant C in 
(17.86)' on 1 u b;o by 1 u 10;0, and furthermore this estimate will be uniform with 
respect to the approximation of the Dirichlet problem (17.61) treated in Sec
tion 17.5. We thus obtain, for example, in place of Theorem 17.18. 

Theorem 17.18'. Let D be a bounded domain in R.n with boundary aD E C3 and let 
4J E C3 (Q). Suppose the functions Fl, F2, ... E C2 (T), are concave with respect to 
z, p, r, non-increasing with respect to z, and satisfy uniformly the structure conditions 
(17.53). Then the classical Dirichlet problem, (17.61), is uniquely solvable with solu
tion u E C2,rx,(Q)for some positive IX depending only on n,.A. and A .. 

17.9. Nonlinear Boundary Value Problems 

The method of continuity, previously applied to the Dirichlet problem in Section 
17.2, readily extends to other boundary value problems as well. Even for the quasi
linear case, the fixed point methods of Chapter 11 are not appropriate, since it is not 
in general possible to construct a compact operator analogous to the operator T in 
Sections 11.2, 11.4. 

We first consider nonlinear boundary value problems of the form, 

(17.100) 
F[u] = F(x, u, Du, D2u) = 0 in D, 

G[u] = G(x, u, Du) = 0 on aD, 

where F and G are real functions on the sets r = D x ~ x ~n X ~n x nand 
T' = aD x ~ x ~n respectively. The case 

(17.101) G(x, z, p) = z - cp(x) 

corresponds to the Dirichlet problem, F[u] = 0 in D, u = cp on aD, previously 
treated in this work. If aD E Ci , G E Ci(T'), the boundary operator G is called 



17.9. Nonlinear Boundary Value Problems 

oblique if 

(17.102) 
oG 
- (x, z, p) . V(X) > ° 
Op 

for all (x, z, p) E r', where v denotes the outer unit normal to oQ, while if 

(17.103) 
oG 
- (x, u(x), Du(x» . v(x) > ° 
op 
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for all x E oQ, for some function u E C1(Q) we call G oblique with respect to u. To 
apply the method of continuity we shall assume that F E C2 • a(f), G E C3 • a(r') and 
take for our Banach spaces, 

for some !'.J. E (0, 1). We then define a mapping P: ~l ---> ~2 by 

P[u] = (F[u], G[u]), 

which has a continuous Frechet derivative on ~1 given by 

(17.104) Puh = (Lh, Nh), hE ~l' 

where L is defined by (17.22) and 

with 
Nh = y(x)h + lJi(x)Dih 

y(x) = Gz<x, u(x), Du(x», 

f3i(X) = Gp,(x, u(x), Du(x». 

It follows then, from the Schauder theory for the linear oblique derivative problem 
in Theorem 6.31, that Puis boundedly invertible if F is strictly elliptic with respect 
to u, G is oblique with respect to u, c( = L 1) ~ 0, y ~ ° and either c =1= ° in Q or 
y =1= ° on oQ. Accordingly we have, by virtue of Theorem 17.7, the following exten
sion of Theorem 17.8. 

Theorem 17.28. Let Q be a C2 ., domain in IR", 0< !'.J. < 1, U an open subset o{the 
space C 2"(Q) and ljJ E U. Set 

(17.105) E = {uEUIP[u] = aP[ljJ] .forsomeaE[O, I]}. 

Suppose that FE C2 ''(t), G E C3.,(r') and that 

(i) F is strictly elliptic in Qfor each u E E; 
(ii) G is either o{theform (17.101) or oblique on aQji}/' each u E £; 
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(iii) Fz(x, u, Du, D2u) :::; 0, Gz(x, u, Du) ? 0 for each U E E with one of these 
quantities not vanishing identically; 

(iv) E is bounded in C2 • a(Q); 
(v) E cU. 

Then the boundary value problem (17.100) is solvable in U. 

A remark analogous to that at the end of Section 17.2 is also pertinent here. 
Namely, the family of boundary value problems in (17.105) may be replaced by 
more general families, P[u; (1] = 0, depending smoothly on (1, for which P[u; 1] = 
P[u] and the equation P[u; 0] = 0 is solvable in U. For each (1 E [0, 1] the operator 
u -+ P[u; (1] must of course satisfy the same hypotheses as P. 

We now show that for quasi linear operators 

(17.106) F[u] = Qu = aij(x, u, Du)Diju + b(x, II, Du), 

condition (iv) in Theorem 17.28 can be weakened to require only the boundedness 
of the set E in CI.6(Q) for some (j > O. This has the effect of reducing the existence 
program for quasilinear equations to the same type of apriori estimation as was 
required for the Dirichlet problem in Chapter 11. For this reduction we need the 
following convergence lemma. 

Lemma 17.29. Let F be a quasilinear operator of the form (17.106) with coefficients 
d i , bE Ca(D x IR x IR") and G a boundary operator of the form (17.100) with G, 
GpECl.a(oD X IR x IR"), 0 < IX < 1. Assume that F is strictly elliptic in D, G is 
oblique on oD, and suppose there exist sequences {um} C C 2 .a(Q), Um} c ca(Q), 
{q>m} c Cl.a(oQ) such that 

(i) P[um] = Um' q>m); 
(ii) {um}, U;"}, {q>m} are uniformly bounded in C1,a(Q), Ca(Q), C1,a(oD), 

respectively; 
(iii) {um}, Um}, {q>m} converge uniformly to functions u, f, q>, respectively. 

Then u E c2 ,a(Q) and P[u] = U, q». 

Proof. Let v = Um - Uk where m, k are positive integers. Then v is a solution of the 
linear problem 

where 

Lv = g in D, 

L -iiD 1I = a iju, 

Nv = '" on oD 

1 

pi = f Gp,(x, Um' DUk + t(Dum - DUk» dt, 

o 

g = fm - f .. + b(x, Ub DUk) - b(x, Um, DUm) 

+ (aij(x, Uk' DUk) - aij(x, tim' Dum»DijUk, 

'" = q>m - q>k + G(X, Uk' DUk) - G(X, Um' DUm)· 



Notes 

From the hypotheses of the lemma we estimate 

Iglab ~ f,(m, k)(1 + KI + K 2) + CK 1, 

l"'II,ab ~ f,(m, k)(l + KI + K 2) 

IPI,b ~ C, [P]1.ab ~ C(l + KI + K 2) 

where f, ---+ 0 as m, k ---+ 00, C is independent of m, k and 
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Using the estimate of Theorem 6.30, as modified in Problem 6.11, we thus obtain 

[V]2.,b ~ C(l + K I) + f,(m, k)K2 

and hence by the interpolation inequality, Theorem 6.35, we have 

(17.107) [V]2.ab ~ C + (i + f,)K2' 

where again C is independent of m, k and f, ---+ 0 as m, k ---+ 00. But (17.107) implies 
the boundedness of [lIm ]2,ab' For suppose not. Then for some m, k 

f,(m, k) < i. 

Hence 

so that by (17.107) we have 

that is, K 2 ~ 4C, contradicting (17.108). Thus [U m]2 .• b is bounded independently of 
m and hence u E C2,ab(Q) with P[u] = (f, q». Finally, by an argument similar to 
the above we infer also u E C2 , '((2). 0 

Combining Lemma 17.29 with Theorem 17.7 we now conclude a version of 
Theorem 17.28 appropriate for quasilinear operators. 

Theorem 17.30. Let Q be a C2 .• domain in !R",O < ry, < 1, and suppose that Q is 
strictly elliptic in Q with aij, bE C2(Q x !R x !R"), and G E C3(DQ x IH x !R") is 
oblique on GQ. Suppose also that a~ = 0, bz ~ 0, Gz ~ 0 with either hz{.\:, lI(X), Dl/(x» 
;f= 0 or G z{x, II(X), Du{x» ;f= 0 for each U E C2, '((2). Theil i/tor some fitnctioll '" E 

C2 , '((2), the set 

(17.109) E = {UEC 2 "((2)IQII = aQ'" inQ, 
G[u] = aG[",] on DQ for some (J E [0, I]} 
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is bounded in CU(Q) jar some (j > 0, the boundary value problem QlI = 0 ill Q, 

G[u] = 0 on iJQ is uniquely solvable in C2 .'(Q). 

As mentioned previously other families of problems may be used in (17.109). 
For example, we could consider a family analogous to that used for the Dirichlet 
problem in Theorem 11.4, namely 

(17.110) 
Qqu = aij(x, u, Du)Diju + ab(x, U, Du) = 0 in Q, 

Gqu = aG(x, u, Du) + (1 - a)u = 0 on iJQ. 

A typical oblique boundary value problem is the conormal derivative boundary 
value problem for an elliptic divergence structure equation, which takes the form 

(17.111) 
Qu = div A(x, u, Du) + B(x, II, Du) = 0 in Q 

G[u] = A(x, u, Du) . vex) + q>(x, u) = 0 on iJQ. 

The problem of determining a capillary surface with prescribed contact angle, 
mentioned in Chapter 10, provides an interesting special case of a conormal deriva
tive boundary value problem. For this example and also for uniformly elliptic Q 
satisfying natural conditions as in Theorem IS.lI, the relevant apriori estimates 
have been proved, so that appropriate existence theorems may be inferred from 
Theorem 17.30. The reader is referred to the literature, for example [LU 4], [UR], 
[GE 3], [LB 2, 3] for further details. 

Notes 

Fully nonlinear equations in two variables were treated by various authors, in
cluding Lewy [LW I], Nirenberg [NI I], Pogorelov [PG I] and Heinz [HE 2], 
with most attention being devoted to equations of Monge-Ampere type and related 
geometric problems such as the Minkowski problem to determine a convex hyper
surface through prescription of its Gauss curvature. The extremal operators of 
Pucci were introduced in [PU 2] and the associated Dirichlet problems also solved 
in the two variable case. 

The higher dimensional Monge-Ampere equations were first solved in a 
generalized sense by Aleksandrov [AL I] and Bakelman [BA 1] using polyhedral 
approximation, with further development in [BA 2, 4], which contains a generalized 
version of the main existence theorem (Theorem 17.24). A generalized solution of 
the Monge-Ampere equation (17.2) can be defined as a convex function whose 
normal mapping is absolutely continuous with density f. The interior regularity of 
generalized solutions (under sufficiently smooth boundary conditions) was estab
lished by Pogorelov [PG 2, 3,4, 5] and Cheng and Yau [CY 1,2], essential in
gredients of their proof being the interior second-derivative bounds of Pogorelov 
and the interior third-derivative bounds ofCalabi [CL]. These authors thus obtained 
Theorem 17.24 for the Monge-Ampere equation (17.2). Our treatment of second
derivative estimates in Section 17.6 uses the Pogorelov method [PG 1, 5] (but 
incorporates a suggestion of L. M. Simon concerning the function h). 
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The main impetus for studying fully nonlinear uniformly elliptic equations 
arose through stochastic control theory, as the Bellman equation (17.8) is satisfied 
by a (sufficiently smooth) optimal cost function in a control problem associated 
with a system of stochastic differential equations. The first significant treatment of 
this equation by Krylov used probability methods and is described in his book 
[K V 2]. Partial differential equation techniques were subsequently developed by: 
Brezis and Evans (who derived C2 • a estimates for the two operator case); Evans and 
Friedman [EF] for the constant coefficient case (see also [LD]); and P. L. Lions 
[LP 4], Evans and Lions [EL 1] for the general uniformly elliptic case. In the 
papers [LP 4], [EL 1], the existence of a strong solution ofthe Dirichlet problem is 
established under conditions (17.62) using a clever method based on approxima
tion by an elliptic system and apriori C1.'(Q) bounds. A full treatment of the 
(possibly degenerate) Bellman equation and connections with stochastic control 
theory and the Bellman dynamic programming method is given by P.-L. Lions in 
[LP 8, 9] and discussed in [LP 10]; (see also [LP 7] for the first-order Hamilton
Jacobi equation). 

The theory of classical solutions of fully nonlinear elliptic equations advanced 
substantially with the discovery of interior second-derivative Holder estimates by 
Evans [EV 2,3] and Krylov [KV 4] who basically proved the results of Sec
tions 17.4 and 17.5. These are treated in Sections 17.4, 17.5 following simplifica
tions ofTrudinger [TR 13]. While we have for expedience in Sections 17.3 and 17.4 
deduced first- and second-derivative bounds through interpolation, such results 
hold under more general structure conditions analogous to those of the quasilin
ear theory [TR 13, 14]. In particular, we may replace the derivative conditions in 
(17.29) and (17.53) by 

(17.29)' IF(x, Z, p, 0)1 ~ ,u-1.(1 + IpI2), 

IFxl, IFzl, IFpl ~ ji-1.(1 + Irl); 
(17.53)' (1 + Ipl)IFpl, IFzl, IFxl ~ ,u-1.(1 + Ipl2 + Irl), 

I Frxl, I Frz I, IFrpl ~ ji-1., 

IFxxl, IFxzl, IFxpl, IFz:l, IFzpl, IFppl ~ ji-1.(1 + Irl) 

where,u is nondecreasing in I z I, ji is nondecreasing in I z 1 + Ip I, (and the concavity 
of F with respect to p and z in (17.53) is dropped). 

Recently the Monge-Ampere equation in higher dimensions has flourished 
again. A partial differential equations approach to the classical Dirichlet problem 
was developed by P.-L. Lions [LP 5, 6] which, on combination with the earlier 
considerations of Bakelman, yielded Theorem 17.24 for CO(Q) 11 C2(Q) solutions. 
Lions' method was based on approximation by problems defined over ~n. In a 
similar vein, Cheng and Yau [CY 3,4] proposed a method based on approxima
tion by problems with infinite boundary values. Also, a probabilistic approach was 
given by Krylov [KV 3]. However the global regularity, which had been an im
pediment to the direct application of the method of continuity, was finally settled 
by CaffarelIi, Nirenberg and Spruck [CNS] and Krylov [KV 5,6], who discovered 
Theorems 17.26 and 17.26' respectively, and consequently established Theorem 
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17.23 in its full strength for the Monge-Ampere equation (17.2). The paper [CNS] 
also reduces the solvability of the Dirichlet problem for general Monge-Ampere 
equations to the existence of globally smooth subsolutions, from which the case 
p = 0, y = n of Theorem 17.23 follows readily. The work of Caffarelli, Nirenberg 
and Spruck [CNS] and also that of Ivochkina [IC 2,3] embraced the case of 
general boundary values ljJ E C4 (Q). In [TU], Theorem 17.24 is extended to 
boundary data aD E Cl,l, ljJ E Cl,l (D). 

The existence of C2'<X(D) solutions of the Bellman equation, Theorem 17.18', is 
due to Krylov [KV 5]. The idea, used in Section 17.8, of invoking the directions 
y as variables occurs in Krylov's treatment of interior second derivative estimates 
in [KV 4]. Theorem 17.18' may also be extended to cover structure conditions 
such as (17.29)" (17.53)' above; (see [TR 13, 14], [CKNS]). 

The reduction of nonlinear boundary value problems to apriori estimation in 
Theorem 17.30 is due to Fiorenza [FI 2]; (see also Ladyzhenskaya and Ural'tseva 
[LU 4]). In our treatment we have adopted some simplification by Lieberman 
[LB 2] in the proof of Lemma 17.29, although the main thrust of Lieberman's work 
is to replace the method of continuity by another functional analytic approach 
which permits a weaker hypothesis than condition (iii) in Theorem 17.28. Oblique 
boundary value problems for fully nonlinear equations have been treated recently 
by Lions and Trudinger [LPT], [TR 14] for Bellman equations, Lieberman and 
Trudinger [LBT], [TR 14] for general nonlinear boundary conditions and by Lions, 
Trudinger and Urbas [LTU] for equations of Monge Ampere type. 

Problems 

17.1. Prove that if the operator (17.1) is elliptic at a point y E r, then the function 
F is strictly increasing with respect to rat y. That is, there exists a positive number 
f. such that 

(17.112) F(x, z, p, r) < F(x, z, p, r + 11) 

for all nonzero, positive semidefinite matrices '1 E ~"x" with 1 '11 < 1:. 

17.2. Prove that the operator F given by (17.1) is Frechet differentiable as a 
mapping from C2'«(Q) into CO'«(Q), for any (X :::; 1, if the function FE C 2'«(f). 

17.3. More generally than Problem 17.2, prove that F is Frechet differentiable as 
a mapping from C2'«(Q) into CO,«Y(D) for any IX, p :::; 1, y < (XP, if the function F is 
differentiable with respect to z, p and r with F, F., Fp , Fr E CP(T). 

17.4. Show that Theorem 17.17 remains valid if the condition FEC2(r) is 
replaced by the existence of the derivatives in (17.53) as weak derivatives in the 
sense of Chapter 7. 
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17.5. Let U E e2(Q) n e4(Q) be a subharmonic solution of the equation 

(17.113) F(D 2 u) = g(x) 

in a domain a c [Rft, where FE e 2([Rft x ft), 9 E e2(Q), F is elliptic with respect to u, 
tr [F i,<D2u)] ~ 1 and F is concave with respect to D 2 u. Prove that 

(17.114) sup ID 2ul ~ C(sup ID2ul + sup ID2gl) 
fl iJfl fl 

where e = C(n). 

17.6. (a) Let F E e1([RftX ft) be invariant under orthogonal transformations. Show 
that for any r E [Rft x ft, the matrices F(r) and r commute. 

(b) Suppose that the conditions of Problem 17.5 are strengthened so that F is 
invariant under orthogonal transformations and concave for r ~ 0, with det 
[Fij(D 2u)] ~ 1. Suppose also that the domain a is uniformly convex with boundary 
va E e 3 and that u = 0 on va. Show that if the solution u is convex, then 

(17.115) sup ID2uI ~ C 
ofl 

where C depends on n, Igll;fl, lul1;fland va. 

17.7. (a) Let FEC1([RftXft) be invariant under orthogonal transformations and 
consider for fixed k, I E {I, ... , n} the polar coordinate transformation 

(17.116) Xk = a + r sin e, 
XI = b - r cos e, 

where a, b are constants. If u E e3(Q) satisfies the equation (17.113) in a, show that 

(17.117) FijDij(:~) = :: 

in a n {r>O}. 

(b) Let a be a e j domain in [Rft. Suppose that 0 E va and that the inner normal 
to va at 0 is directed along the Xft axis. If u Eel (Q) and u = 0 on va, show that in a 
neighbourhood of 0, either 

where e is given by (17.116) with appropriate choice of a, b and I = n, and e depends 
on va and I u It;Q' Accordingly show that in Problem 17.6, the assumption of 
convexity of u can be dropped. (Cf. [IC 1].) 
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17.8. Let Q be a C 2 uniformly convex domain in ~n. Show the existence of a 
uniformly convex function u E C2(Q) vanishing on oQ. 

17.9. Show that the equation 

is elliptic with respect to any solution u (or its negative) if the function I is positive. 
Using the results of Problems 17.5, 17.7 together with Theorems 17.14, 17.26, show 
that the classical Dirichlet problem for (17.118) is solvable for any uniformly convex 
domain Q E C 3, zero boundary values and positive IE C 2(Q). More generally 
we note here that this result extends to domains Q whose boundary has positive 
mean curvature. 

17.10. Let FE C 1( Q x ~ x ~" X ~n X") satisfy 

F(xo, 0, 0, 0) = 0, 

at some point Xo E Q. Using the implicit function (Theorem 17.6), show that in 
some neighbourhood % of xo, there exists a C2(%) solution u of equation (17.1) 
satisfying u(xo) = Du(xo) = 0. (Hint: Taking Xo = 0, t E~, make the change of 
variables x = ty, u = t 2 v.) 
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Epilogue 

This book has been devoted to the theory of elliptic, second order, partial differ
ential equations with emphasis on the Dirichlet problem for linear and quasilinear 
equations. Its second edition in 1983 included an introductory chapter on fully 
nonlinear elliptic equations as the Krylov-Safonov Holder estimates had recently 
opened up the higher dimensional theory. This was analogous to the role of the 
De Giorgi-Nash Holder estimates in the higher dimensional quasilinear theory 
about a quarter century earlier. It should not be surprising that the fully nonlinear 
theory, with its rich applications to stochastic optimization and geometry, has 
blossomed since our second edition appeared. 

We comment briefly on some of the main developments. 

Viscosity solutions. The notion of viscosity solution, introduced for first order 
equations by Crandall and Lions, ([LP 5], [CL], [CIL]), was extended to second 
order equations, with dramatic consequences in the wake of a breakthrough by 
Jensen [JEN] enabling approximation by semi-convex or semi-concave functions. 
The concept of viscosity subsolution relates to that of sub harmonic function, as 
introduced in Sections 2.8 and 6.3. Using the terminology of Chapter 17, if 
FE CO (T) is monotone increasing with respect to r ERn x n, we call a function 
u E CO (Q) a viscosity subsolution (supersolution) of equation (17.1) in Q, if for 
every point YEQ and function VEC 2 (Q) satisfying u~v(~v) in Q and 
u(y)=v(y), we have F[v] (y)~O, (~O). It is readily seen that for linear elliptic 
equations, Lu=f, this notion coincides with that of Section 6.3. Moreover, Ishii 
[IS] showed that the Perron process could be used to infer existence of viscosity 
solutions of the Dirichlet problem, with the aid of comparison principles extend
ing those of Jensen [JEN]. Various aspects of this theory and its widespread 
applications are described in the expository works [CIL], [FLS]. 

Uniformly elliptic equations. The second derivative Holder estimates in Sections 
17.4 and 17.8 were improved by Safonov [SE 2], [SF 4] and Caffarelli [CAF] by 
perturbation arguments from the special case (17.32). As a by-product, simpler 
proofs of the Schauder estimates for linear equations were obtained by various 
authors, including in particular an "L oo-Campanato" method [SF 4], [KV 9]. 
Caffarelli also deduced LP -estimates for second derivatives for p > n; (see [CC]). 
The basic theory is also covered in [KV 7], [TR 16]. 
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Non-uniformly elliptic equations. The Monge-Ampere and Gauss curvature equa
tions are special cases of Hessian and curvature equations determined by the 
elementary symmetric functions. The classical Dirichlet problem is treated in the 
works [CNS 2,3], [IC 4], [KV 7,8], [TR 17]. 

Quasilinear equations. The special treatment of the two dimensional case stems 
from Morrey's gradient estimate, Theorem 12.4. By showing that the exponent in 
the Holder estimate, Corollary 9.24, can be arbitrarily small, Safonov [SF 3], 
confirmed that this approach is not extendible to higher dimensions. 

Finally, we note that Korevaar [KOR] showed that the interior gradient bound 
for the minimal surface and prescribed mean curvature equations can be deduced 
from the maximum principle along the lines of Section 15.3. The resultant bound 
is not as precise as that in Theorem 16.5. 
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on hypersurface 393, 396, 439 

mean value theorem 14 
method of continuity 75, 448 
minimal surface 357 
minimal surface equation (operator) 

curvature estimate 437 
Dirichlet problem 352, 407 
gradient estimates 339, 341,406 
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see also quasi linear elliptic equations (operators) 
minimal surface type, equations of 

see also mean curvature type, equations of 437 
mixed boundary condition 47 
mixed boundary value problem 215 
mollifier 147 
Monge-Ampere equation 441,467 

Dirichlet problem 471,473,474 
gradient estimates 472 
second derivative estimates 470,471,476 

Morrey's lemma 298 
Moser iteration technique 191, 195 

Newtonian potential 18,5Iff. 
differentiability properties 54f. 
generalized 68 
Holder estimates 57, 64 

nonlinear boundary value problems 481 
non-uniformly elliptic equations (operators) 

Iliff. 
see also linear elliptic equations (operators) 

norm 73 
boundary- 95 
on Holder spaces 53,61,66,90,96 
on LP spaces 145 

normal mapping 221 
normed linear space 73 

oblique derivative problem 120ff. 
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Schauder estimates I 25f. 
solvability 128 

for nonlinear equations 481 
non-regular- 141 
for Poisson's equation 120ff. 

Holder estimates 123, 125 
regular- 121 
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481 

regular- 47, 121, 126 
orthogonality 81 
orthogonal projection 82 

parallelogram law 80 
parametric functional 435 

elliptic- 435 
partition of unity 136 
perpendicular elements 81 
Perron method 24, 102 



514 

Perron solution 25 
Poincare inequalities 164 
Poisson's equation 51 If. 

boundary Holder estimates 641f. 
compactness of solutions 61 
Dirichlet problem 15,56,62,67,71 
gradient estimates 41 
interior Holder estimates 60, 62 
oblique derivative problem 1201f. 

Poisson integral 20 
Poisson integral formula 20 
Poisson kernel 20 
prescribed Gauss curvature equation 442 
prescribed mean curvature equation 261, 388f. 

boundary gradient estimate 340, 345 
gradient estimate 367 
maximum principle 276f. 
Dirichlet problem 

non-solvability 352 
solvability 407,440 
uniqueness 407 

see also quasi linear elliptic equations 
principal coordinate system 354 
principal curvature 354 
principal directions 354 
Pucci equation 442 

quasiconformal mapping 2941f. 
Holder estimates 299 
on hypersurface 416 

Holder estimates 422 
quasilinear elliptic equations (operators) I, 

2571f. 
comparison principles 263.268. 347 
in divergence form 5, 260 

Dirichlet problem, solvability 283. 331, 385 
global gradient estimates 323, 374. 380 
interior gradient estimates 320. 379, 387 
regularity 379 

equivalent- 259 
in general form 

boundary gradient estimates 337, 3831f., 
3441f .. 358 

continuity estimate 353 
Dirichlet problem 

non-solvability 350, 352 
non-uniqueness 267 
solvability 281,287,331, 3801f., 385 
uniqueness 264 

global gradient estimates 331. 367 
interior gradient estimates 328, 372 
regularity 281, 287 

maximum principles 262.264. 2711f., 2771f. 
for gradient 362 

in two variables 
Dirichlet problem, solvability 283. 305, 

312,331 
gradient estimates 311, 323f. 

quasisolution 291 

Rayleigh quotient 213 
reflexive space 79 
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regular boundary point 25, 139, 206 
Wiener criterion 28, 206 

regular functional 289 
regular oblique derivative problem 

see oblique derivative problem 
regularity 

of classical solutions 109, 140 
of weak solutions I 831f. 
for quasi linear equations 281, 287, 379 
see also gradient estimates. Holder estimates, 

Schauder estimates 
regularization of a function 147 
resolvent operator 78 
Riesz representation theorem 82 

scalar product 80 
Schauder estimates 

boundary 951f., 100 
global 98, 142 
interior 90,93, 112, 141 
for oblique derivative problem 126f. 

Schauder fixed point theorem 279 
Schwarz inequality 80, 146 
Schwarz reflection principle 28 
segment condition 155 
Sobolev inequalities 155,158,164,439 

best constant 158 
Sobolev spaces 153 

density theorems 154 
imbedding theorems 155, 158, 162, 167 
norm 153 
scalar product 154 

sphere condition 
enclosing- 339 
exterior- 27 
interior- 33 

Stokes' theorem 4 \3 
straightening the boundary 94 
strict exterior plane condition 117 
strictly elliptic equations (operators) 31.87 

see also linear elliptic equatIOns (operators), 
quasilinear elliptic equations (operators) 

strong derivative 150 
strong maximum principle 

see maximum principles 
strong solution 219 

Dirichlet problem 241 
Harnack inequality 250 
Holder estimates 250 

structure conditions 188, 194, 271, 305, 3351f., 
3661f. 

natural- 367,375 
structural inequalities 

see structure conditions 
subfunction 24. 102 
subharmonic function 13. 23 

on hypersurface 393 
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weakly- 29 
subsolution 33, 45, 102 

weak- 188 
superfunction 24, 102 
superharmonic function 13,23 

weakly- 29 
supersolution 33, 45, 102 

weak- 188 

tangential gradient 389 
test function 178 
three-point condition 310,314 
total variation 175 
triangle inequality 80 

uniformly convex domain 283, 339 
uniformly elliptic equations (operators) I, 31, 
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see also linear elliptic equations (operators), 
quasi linear elliptic equations (operators) 

variational problems 288ff. 

weak convergence 85 
weak derivative 149 

chain rule 151 
product rule 150 

weak maximum principle 
see maximum principles 

weak solution 3, 177 
see also linear elliptic equations 

Wiener criterion 28, 206 
Wirtinger's inequality 297 

Young's inequality 145 
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b. 430 
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G 423 
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11-11 M P(1ll 164 H 354,401 



Notation Index 517 

J(cp) 414 G R , GR(y) 394 
X~X- 342 .Y 339 
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X(y), Xu(y) 221 (aU, cp) 283 
v 13,354 
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